Identifier
- St000005: Dyck paths ⟶ ℤ
Values
=>
Cc0005;cc-rep
[1,0]=>0
[1,0,1,0]=>1
[1,1,0,0]=>0
[1,0,1,0,1,0]=>3
[1,0,1,1,0,0]=>1
[1,1,0,0,1,0]=>2
[1,1,0,1,0,0]=>1
[1,1,1,0,0,0]=>0
[1,0,1,0,1,0,1,0]=>6
[1,0,1,0,1,1,0,0]=>3
[1,0,1,1,0,0,1,0]=>4
[1,0,1,1,0,1,0,0]=>3
[1,0,1,1,1,0,0,0]=>1
[1,1,0,0,1,0,1,0]=>5
[1,1,0,0,1,1,0,0]=>2
[1,1,0,1,0,0,1,0]=>4
[1,1,0,1,0,1,0,0]=>2
[1,1,0,1,1,0,0,0]=>1
[1,1,1,0,0,0,1,0]=>3
[1,1,1,0,0,1,0,0]=>2
[1,1,1,0,1,0,0,0]=>1
[1,1,1,1,0,0,0,0]=>0
[1,0,1,0,1,0,1,0,1,0]=>10
[1,0,1,0,1,0,1,1,0,0]=>6
[1,0,1,0,1,1,0,0,1,0]=>7
[1,0,1,0,1,1,0,1,0,0]=>6
[1,0,1,0,1,1,1,0,0,0]=>3
[1,0,1,1,0,0,1,0,1,0]=>8
[1,0,1,1,0,0,1,1,0,0]=>4
[1,0,1,1,0,1,0,0,1,0]=>7
[1,0,1,1,0,1,0,1,0,0]=>4
[1,0,1,1,0,1,1,0,0,0]=>3
[1,0,1,1,1,0,0,0,1,0]=>5
[1,0,1,1,1,0,0,1,0,0]=>4
[1,0,1,1,1,0,1,0,0,0]=>3
[1,0,1,1,1,1,0,0,0,0]=>1
[1,1,0,0,1,0,1,0,1,0]=>9
[1,1,0,0,1,0,1,1,0,0]=>5
[1,1,0,0,1,1,0,0,1,0]=>6
[1,1,0,0,1,1,0,1,0,0]=>5
[1,1,0,0,1,1,1,0,0,0]=>2
[1,1,0,1,0,0,1,0,1,0]=>8
[1,1,0,1,0,0,1,1,0,0]=>4
[1,1,0,1,0,1,0,0,1,0]=>6
[1,1,0,1,0,1,0,1,0,0]=>4
[1,1,0,1,0,1,1,0,0,0]=>2
[1,1,0,1,1,0,0,0,1,0]=>5
[1,1,0,1,1,0,0,1,0,0]=>4
[1,1,0,1,1,0,1,0,0,0]=>2
[1,1,0,1,1,1,0,0,0,0]=>1
[1,1,1,0,0,0,1,0,1,0]=>7
[1,1,1,0,0,0,1,1,0,0]=>3
[1,1,1,0,0,1,0,0,1,0]=>6
[1,1,1,0,0,1,0,1,0,0]=>3
[1,1,1,0,0,1,1,0,0,0]=>2
[1,1,1,0,1,0,0,0,1,0]=>5
[1,1,1,0,1,0,0,1,0,0]=>3
[1,1,1,0,1,0,1,0,0,0]=>2
[1,1,1,0,1,1,0,0,0,0]=>1
[1,1,1,1,0,0,0,0,1,0]=>4
[1,1,1,1,0,0,0,1,0,0]=>3
[1,1,1,1,0,0,1,0,0,0]=>2
[1,1,1,1,0,1,0,0,0,0]=>1
[1,1,1,1,1,0,0,0,0,0]=>0
[1,0,1,0,1,0,1,0,1,0,1,0]=>15
[1,0,1,0,1,0,1,0,1,1,0,0]=>10
[1,0,1,0,1,0,1,1,0,0,1,0]=>11
[1,0,1,0,1,0,1,1,0,1,0,0]=>10
[1,0,1,0,1,0,1,1,1,0,0,0]=>6
[1,0,1,0,1,1,0,0,1,0,1,0]=>12
[1,0,1,0,1,1,0,0,1,1,0,0]=>7
[1,0,1,0,1,1,0,1,0,0,1,0]=>11
[1,0,1,0,1,1,0,1,0,1,0,0]=>7
[1,0,1,0,1,1,0,1,1,0,0,0]=>6
[1,0,1,0,1,1,1,0,0,0,1,0]=>8
[1,0,1,0,1,1,1,0,0,1,0,0]=>7
[1,0,1,0,1,1,1,0,1,0,0,0]=>6
[1,0,1,0,1,1,1,1,0,0,0,0]=>3
[1,0,1,1,0,0,1,0,1,0,1,0]=>13
[1,0,1,1,0,0,1,0,1,1,0,0]=>8
[1,0,1,1,0,0,1,1,0,0,1,0]=>9
[1,0,1,1,0,0,1,1,0,1,0,0]=>8
[1,0,1,1,0,0,1,1,1,0,0,0]=>4
[1,0,1,1,0,1,0,0,1,0,1,0]=>12
[1,0,1,1,0,1,0,0,1,1,0,0]=>7
[1,0,1,1,0,1,0,1,0,0,1,0]=>9
[1,0,1,1,0,1,0,1,0,1,0,0]=>7
[1,0,1,1,0,1,0,1,1,0,0,0]=>4
[1,0,1,1,0,1,1,0,0,0,1,0]=>8
[1,0,1,1,0,1,1,0,0,1,0,0]=>7
[1,0,1,1,0,1,1,0,1,0,0,0]=>4
[1,0,1,1,0,1,1,1,0,0,0,0]=>3
[1,0,1,1,1,0,0,0,1,0,1,0]=>10
[1,0,1,1,1,0,0,0,1,1,0,0]=>5
[1,0,1,1,1,0,0,1,0,0,1,0]=>9
[1,0,1,1,1,0,0,1,0,1,0,0]=>5
[1,0,1,1,1,0,0,1,1,0,0,0]=>4
[1,0,1,1,1,0,1,0,0,0,1,0]=>8
[1,0,1,1,1,0,1,0,0,1,0,0]=>5
[1,0,1,1,1,0,1,0,1,0,0,0]=>4
[1,0,1,1,1,0,1,1,0,0,0,0]=>3
[1,0,1,1,1,1,0,0,0,0,1,0]=>6
[1,0,1,1,1,1,0,0,0,1,0,0]=>5
[1,0,1,1,1,1,0,0,1,0,0,0]=>4
[1,0,1,1,1,1,0,1,0,0,0,0]=>3
[1,0,1,1,1,1,1,0,0,0,0,0]=>1
[1,1,0,0,1,0,1,0,1,0,1,0]=>14
[1,1,0,0,1,0,1,0,1,1,0,0]=>9
[1,1,0,0,1,0,1,1,0,0,1,0]=>10
[1,1,0,0,1,0,1,1,0,1,0,0]=>9
[1,1,0,0,1,0,1,1,1,0,0,0]=>5
[1,1,0,0,1,1,0,0,1,0,1,0]=>11
[1,1,0,0,1,1,0,0,1,1,0,0]=>6
[1,1,0,0,1,1,0,1,0,0,1,0]=>10
[1,1,0,0,1,1,0,1,0,1,0,0]=>6
[1,1,0,0,1,1,0,1,1,0,0,0]=>5
[1,1,0,0,1,1,1,0,0,0,1,0]=>7
[1,1,0,0,1,1,1,0,0,1,0,0]=>6
[1,1,0,0,1,1,1,0,1,0,0,0]=>5
[1,1,0,0,1,1,1,1,0,0,0,0]=>2
[1,1,0,1,0,0,1,0,1,0,1,0]=>13
[1,1,0,1,0,0,1,0,1,1,0,0]=>8
[1,1,0,1,0,0,1,1,0,0,1,0]=>9
[1,1,0,1,0,0,1,1,0,1,0,0]=>8
[1,1,0,1,0,0,1,1,1,0,0,0]=>4
[1,1,0,1,0,1,0,0,1,0,1,0]=>11
[1,1,0,1,0,1,0,0,1,1,0,0]=>6
[1,1,0,1,0,1,0,1,0,0,1,0]=>9
[1,1,0,1,0,1,0,1,0,1,0,0]=>6
[1,1,0,1,0,1,0,1,1,0,0,0]=>4
[1,1,0,1,0,1,1,0,0,0,1,0]=>7
[1,1,0,1,0,1,1,0,0,1,0,0]=>6
[1,1,0,1,0,1,1,0,1,0,0,0]=>4
[1,1,0,1,0,1,1,1,0,0,0,0]=>2
[1,1,0,1,1,0,0,0,1,0,1,0]=>10
[1,1,0,1,1,0,0,0,1,1,0,0]=>5
[1,1,0,1,1,0,0,1,0,0,1,0]=>9
[1,1,0,1,1,0,0,1,0,1,0,0]=>5
[1,1,0,1,1,0,0,1,1,0,0,0]=>4
[1,1,0,1,1,0,1,0,0,0,1,0]=>7
[1,1,0,1,1,0,1,0,0,1,0,0]=>5
[1,1,0,1,1,0,1,0,1,0,0,0]=>4
[1,1,0,1,1,0,1,1,0,0,0,0]=>2
[1,1,0,1,1,1,0,0,0,0,1,0]=>6
[1,1,0,1,1,1,0,0,0,1,0,0]=>5
[1,1,0,1,1,1,0,0,1,0,0,0]=>4
[1,1,0,1,1,1,0,1,0,0,0,0]=>2
[1,1,0,1,1,1,1,0,0,0,0,0]=>1
[1,1,1,0,0,0,1,0,1,0,1,0]=>12
[1,1,1,0,0,0,1,0,1,1,0,0]=>7
[1,1,1,0,0,0,1,1,0,0,1,0]=>8
[1,1,1,0,0,0,1,1,0,1,0,0]=>7
[1,1,1,0,0,0,1,1,1,0,0,0]=>3
[1,1,1,0,0,1,0,0,1,0,1,0]=>11
[1,1,1,0,0,1,0,0,1,1,0,0]=>6
[1,1,1,0,0,1,0,1,0,0,1,0]=>8
[1,1,1,0,0,1,0,1,0,1,0,0]=>6
[1,1,1,0,0,1,0,1,1,0,0,0]=>3
[1,1,1,0,0,1,1,0,0,0,1,0]=>7
[1,1,1,0,0,1,1,0,0,1,0,0]=>6
[1,1,1,0,0,1,1,0,1,0,0,0]=>3
[1,1,1,0,0,1,1,1,0,0,0,0]=>2
[1,1,1,0,1,0,0,0,1,0,1,0]=>10
[1,1,1,0,1,0,0,0,1,1,0,0]=>5
[1,1,1,0,1,0,0,1,0,0,1,0]=>8
[1,1,1,0,1,0,0,1,0,1,0,0]=>5
[1,1,1,0,1,0,0,1,1,0,0,0]=>3
[1,1,1,0,1,0,1,0,0,0,1,0]=>7
[1,1,1,0,1,0,1,0,0,1,0,0]=>5
[1,1,1,0,1,0,1,0,1,0,0,0]=>3
[1,1,1,0,1,0,1,1,0,0,0,0]=>2
[1,1,1,0,1,1,0,0,0,0,1,0]=>6
[1,1,1,0,1,1,0,0,0,1,0,0]=>5
[1,1,1,0,1,1,0,0,1,0,0,0]=>3
[1,1,1,0,1,1,0,1,0,0,0,0]=>2
[1,1,1,0,1,1,1,0,0,0,0,0]=>1
[1,1,1,1,0,0,0,0,1,0,1,0]=>9
[1,1,1,1,0,0,0,0,1,1,0,0]=>4
[1,1,1,1,0,0,0,1,0,0,1,0]=>8
[1,1,1,1,0,0,0,1,0,1,0,0]=>4
[1,1,1,1,0,0,0,1,1,0,0,0]=>3
[1,1,1,1,0,0,1,0,0,0,1,0]=>7
[1,1,1,1,0,0,1,0,0,1,0,0]=>4
[1,1,1,1,0,0,1,0,1,0,0,0]=>3
[1,1,1,1,0,0,1,1,0,0,0,0]=>2
[1,1,1,1,0,1,0,0,0,0,1,0]=>6
[1,1,1,1,0,1,0,0,0,1,0,0]=>4
[1,1,1,1,0,1,0,0,1,0,0,0]=>3
[1,1,1,1,0,1,0,1,0,0,0,0]=>2
[1,1,1,1,0,1,1,0,0,0,0,0]=>1
[1,1,1,1,1,0,0,0,0,0,1,0]=>5
[1,1,1,1,1,0,0,0,0,1,0,0]=>4
[1,1,1,1,1,0,0,0,1,0,0,0]=>3
[1,1,1,1,1,0,0,1,0,0,0,0]=>2
[1,1,1,1,1,0,1,0,0,0,0,0]=>1
[1,1,1,1,1,1,0,0,0,0,0,0]=>0
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The bounce statistic of a Dyck path.
The bounce path $D'$ of a Dyck path $D$ is the Dyck path obtained from $D$ by starting at the end point $(2n,0)$, traveling north-west until hitting $D$, then bouncing back south-west to the $x$-axis, and repeating this procedure until finally reaching the point $(0,0)$.
The points where $D'$ touches the $x$-axis are called bounce points, and a bounce path is uniquely determined by its bounce points.
This statistic is given by the sum of all $i$ for which the bounce path $D'$ of $D$ touches the $x$-axis at $(2i,0)$.
In particular, the bounce statistics of $D$ and $D'$ coincide.
The bounce path $D'$ of a Dyck path $D$ is the Dyck path obtained from $D$ by starting at the end point $(2n,0)$, traveling north-west until hitting $D$, then bouncing back south-west to the $x$-axis, and repeating this procedure until finally reaching the point $(0,0)$.
The points where $D'$ touches the $x$-axis are called bounce points, and a bounce path is uniquely determined by its bounce points.
This statistic is given by the sum of all $i$ for which the bounce path $D'$ of $D$ touches the $x$-axis at $(2i,0)$.
In particular, the bounce statistics of $D$ and $D'$ coincide.
Code
def statistic(x): return x.bounce()
Created
Sep 15, 2011 at 15:56 by Chris Berg
Updated
Jun 17, 2019 at 17:01 by Christian Stump
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!