edit this statistic or download as text // json
Identifier
Values
=>
Cc0005;cc-rep
[1,0]=>1 [1,0,1,0]=>2 [1,1,0,0]=>1 [1,0,1,0,1,0]=>6 [1,0,1,1,0,0]=>3 [1,1,0,0,1,0]=>3 [1,1,0,1,0,0]=>3 [1,1,1,0,0,0]=>1 [1,0,1,0,1,0,1,0]=>24 [1,0,1,0,1,1,0,0]=>12 [1,0,1,1,0,0,1,0]=>12 [1,0,1,1,0,1,0,0]=>12 [1,0,1,1,1,0,0,0]=>4 [1,1,0,0,1,0,1,0]=>12 [1,1,0,0,1,1,0,0]=>6 [1,1,0,1,0,0,1,0]=>12 [1,1,0,1,0,1,0,0]=>12 [1,1,0,1,1,0,0,0]=>6 [1,1,1,0,0,0,1,0]=>4 [1,1,1,0,0,1,0,0]=>4 [1,1,1,0,1,0,0,0]=>4 [1,1,1,1,0,0,0,0]=>1 [1,0,1,0,1,0,1,0,1,0]=>120 [1,0,1,0,1,0,1,1,0,0]=>60 [1,0,1,0,1,1,0,0,1,0]=>60 [1,0,1,0,1,1,0,1,0,0]=>60 [1,0,1,0,1,1,1,0,0,0]=>20 [1,0,1,1,0,0,1,0,1,0]=>60 [1,0,1,1,0,0,1,1,0,0]=>30 [1,0,1,1,0,1,0,0,1,0]=>60 [1,0,1,1,0,1,0,1,0,0]=>60 [1,0,1,1,0,1,1,0,0,0]=>30 [1,0,1,1,1,0,0,0,1,0]=>20 [1,0,1,1,1,0,0,1,0,0]=>20 [1,0,1,1,1,0,1,0,0,0]=>20 [1,0,1,1,1,1,0,0,0,0]=>5 [1,1,0,0,1,0,1,0,1,0]=>60 [1,1,0,0,1,0,1,1,0,0]=>30 [1,1,0,0,1,1,0,0,1,0]=>30 [1,1,0,0,1,1,0,1,0,0]=>30 [1,1,0,0,1,1,1,0,0,0]=>10 [1,1,0,1,0,0,1,0,1,0]=>60 [1,1,0,1,0,0,1,1,0,0]=>30 [1,1,0,1,0,1,0,0,1,0]=>60 [1,1,0,1,0,1,0,1,0,0]=>60 [1,1,0,1,0,1,1,0,0,0]=>30 [1,1,0,1,1,0,0,0,1,0]=>30 [1,1,0,1,1,0,0,1,0,0]=>30 [1,1,0,1,1,0,1,0,0,0]=>30 [1,1,0,1,1,1,0,0,0,0]=>10 [1,1,1,0,0,0,1,0,1,0]=>20 [1,1,1,0,0,0,1,1,0,0]=>10 [1,1,1,0,0,1,0,0,1,0]=>20 [1,1,1,0,0,1,0,1,0,0]=>20 [1,1,1,0,0,1,1,0,0,0]=>10 [1,1,1,0,1,0,0,0,1,0]=>20 [1,1,1,0,1,0,0,1,0,0]=>20 [1,1,1,0,1,0,1,0,0,0]=>20 [1,1,1,0,1,1,0,0,0,0]=>10 [1,1,1,1,0,0,0,0,1,0]=>5 [1,1,1,1,0,0,0,1,0,0]=>5 [1,1,1,1,0,0,1,0,0,0]=>5 [1,1,1,1,0,1,0,0,0,0]=>5 [1,1,1,1,1,0,0,0,0,0]=>1 [1,0,1,0,1,0,1,0,1,0,1,0]=>720 [1,0,1,0,1,0,1,0,1,1,0,0]=>360 [1,0,1,0,1,0,1,1,0,0,1,0]=>360 [1,0,1,0,1,0,1,1,0,1,0,0]=>360 [1,0,1,0,1,0,1,1,1,0,0,0]=>120 [1,0,1,0,1,1,0,0,1,0,1,0]=>360 [1,0,1,0,1,1,0,0,1,1,0,0]=>180 [1,0,1,0,1,1,0,1,0,0,1,0]=>360 [1,0,1,0,1,1,0,1,0,1,0,0]=>360 [1,0,1,0,1,1,0,1,1,0,0,0]=>180 [1,0,1,0,1,1,1,0,0,0,1,0]=>120 [1,0,1,0,1,1,1,0,0,1,0,0]=>120 [1,0,1,0,1,1,1,0,1,0,0,0]=>120 [1,0,1,0,1,1,1,1,0,0,0,0]=>30 [1,0,1,1,0,0,1,0,1,0,1,0]=>360 [1,0,1,1,0,0,1,0,1,1,0,0]=>180 [1,0,1,1,0,0,1,1,0,0,1,0]=>180 [1,0,1,1,0,0,1,1,0,1,0,0]=>180 [1,0,1,1,0,0,1,1,1,0,0,0]=>60 [1,0,1,1,0,1,0,0,1,0,1,0]=>360 [1,0,1,1,0,1,0,0,1,1,0,0]=>180 [1,0,1,1,0,1,0,1,0,0,1,0]=>360 [1,0,1,1,0,1,0,1,0,1,0,0]=>360 [1,0,1,1,0,1,0,1,1,0,0,0]=>180 [1,0,1,1,0,1,1,0,0,0,1,0]=>180 [1,0,1,1,0,1,1,0,0,1,0,0]=>180 [1,0,1,1,0,1,1,0,1,0,0,0]=>180 [1,0,1,1,0,1,1,1,0,0,0,0]=>60 [1,0,1,1,1,0,0,0,1,0,1,0]=>120 [1,0,1,1,1,0,0,0,1,1,0,0]=>60 [1,0,1,1,1,0,0,1,0,0,1,0]=>120 [1,0,1,1,1,0,0,1,0,1,0,0]=>120 [1,0,1,1,1,0,0,1,1,0,0,0]=>60 [1,0,1,1,1,0,1,0,0,0,1,0]=>120 [1,0,1,1,1,0,1,0,0,1,0,0]=>120 [1,0,1,1,1,0,1,0,1,0,0,0]=>120 [1,0,1,1,1,0,1,1,0,0,0,0]=>60 [1,0,1,1,1,1,0,0,0,0,1,0]=>30 [1,0,1,1,1,1,0,0,0,1,0,0]=>30 [1,0,1,1,1,1,0,0,1,0,0,0]=>30 [1,0,1,1,1,1,0,1,0,0,0,0]=>30 [1,0,1,1,1,1,1,0,0,0,0,0]=>6 [1,1,0,0,1,0,1,0,1,0,1,0]=>360 [1,1,0,0,1,0,1,0,1,1,0,0]=>180 [1,1,0,0,1,0,1,1,0,0,1,0]=>180 [1,1,0,0,1,0,1,1,0,1,0,0]=>180 [1,1,0,0,1,0,1,1,1,0,0,0]=>60 [1,1,0,0,1,1,0,0,1,0,1,0]=>180 [1,1,0,0,1,1,0,0,1,1,0,0]=>90 [1,1,0,0,1,1,0,1,0,0,1,0]=>180 [1,1,0,0,1,1,0,1,0,1,0,0]=>180 [1,1,0,0,1,1,0,1,1,0,0,0]=>90 [1,1,0,0,1,1,1,0,0,0,1,0]=>60 [1,1,0,0,1,1,1,0,0,1,0,0]=>60 [1,1,0,0,1,1,1,0,1,0,0,0]=>60 [1,1,0,0,1,1,1,1,0,0,0,0]=>15 [1,1,0,1,0,0,1,0,1,0,1,0]=>360 [1,1,0,1,0,0,1,0,1,1,0,0]=>180 [1,1,0,1,0,0,1,1,0,0,1,0]=>180 [1,1,0,1,0,0,1,1,0,1,0,0]=>180 [1,1,0,1,0,0,1,1,1,0,0,0]=>60 [1,1,0,1,0,1,0,0,1,0,1,0]=>360 [1,1,0,1,0,1,0,0,1,1,0,0]=>180 [1,1,0,1,0,1,0,1,0,0,1,0]=>360 [1,1,0,1,0,1,0,1,0,1,0,0]=>360 [1,1,0,1,0,1,0,1,1,0,0,0]=>180 [1,1,0,1,0,1,1,0,0,0,1,0]=>180 [1,1,0,1,0,1,1,0,0,1,0,0]=>180 [1,1,0,1,0,1,1,0,1,0,0,0]=>180 [1,1,0,1,0,1,1,1,0,0,0,0]=>60 [1,1,0,1,1,0,0,0,1,0,1,0]=>180 [1,1,0,1,1,0,0,0,1,1,0,0]=>90 [1,1,0,1,1,0,0,1,0,0,1,0]=>180 [1,1,0,1,1,0,0,1,0,1,0,0]=>180 [1,1,0,1,1,0,0,1,1,0,0,0]=>90 [1,1,0,1,1,0,1,0,0,0,1,0]=>180 [1,1,0,1,1,0,1,0,0,1,0,0]=>180 [1,1,0,1,1,0,1,0,1,0,0,0]=>180 [1,1,0,1,1,0,1,1,0,0,0,0]=>90 [1,1,0,1,1,1,0,0,0,0,1,0]=>60 [1,1,0,1,1,1,0,0,0,1,0,0]=>60 [1,1,0,1,1,1,0,0,1,0,0,0]=>60 [1,1,0,1,1,1,0,1,0,0,0,0]=>60 [1,1,0,1,1,1,1,0,0,0,0,0]=>15 [1,1,1,0,0,0,1,0,1,0,1,0]=>120 [1,1,1,0,0,0,1,0,1,1,0,0]=>60 [1,1,1,0,0,0,1,1,0,0,1,0]=>60 [1,1,1,0,0,0,1,1,0,1,0,0]=>60 [1,1,1,0,0,0,1,1,1,0,0,0]=>20 [1,1,1,0,0,1,0,0,1,0,1,0]=>120 [1,1,1,0,0,1,0,0,1,1,0,0]=>60 [1,1,1,0,0,1,0,1,0,0,1,0]=>120 [1,1,1,0,0,1,0,1,0,1,0,0]=>120 [1,1,1,0,0,1,0,1,1,0,0,0]=>60 [1,1,1,0,0,1,1,0,0,0,1,0]=>60 [1,1,1,0,0,1,1,0,0,1,0,0]=>60 [1,1,1,0,0,1,1,0,1,0,0,0]=>60 [1,1,1,0,0,1,1,1,0,0,0,0]=>20 [1,1,1,0,1,0,0,0,1,0,1,0]=>120 [1,1,1,0,1,0,0,0,1,1,0,0]=>60 [1,1,1,0,1,0,0,1,0,0,1,0]=>120 [1,1,1,0,1,0,0,1,0,1,0,0]=>120 [1,1,1,0,1,0,0,1,1,0,0,0]=>60 [1,1,1,0,1,0,1,0,0,0,1,0]=>120 [1,1,1,0,1,0,1,0,0,1,0,0]=>120 [1,1,1,0,1,0,1,0,1,0,0,0]=>120 [1,1,1,0,1,0,1,1,0,0,0,0]=>60 [1,1,1,0,1,1,0,0,0,0,1,0]=>60 [1,1,1,0,1,1,0,0,0,1,0,0]=>60 [1,1,1,0,1,1,0,0,1,0,0,0]=>60 [1,1,1,0,1,1,0,1,0,0,0,0]=>60 [1,1,1,0,1,1,1,0,0,0,0,0]=>20 [1,1,1,1,0,0,0,0,1,0,1,0]=>30 [1,1,1,1,0,0,0,0,1,1,0,0]=>15 [1,1,1,1,0,0,0,1,0,0,1,0]=>30 [1,1,1,1,0,0,0,1,0,1,0,0]=>30 [1,1,1,1,0,0,0,1,1,0,0,0]=>15 [1,1,1,1,0,0,1,0,0,0,1,0]=>30 [1,1,1,1,0,0,1,0,0,1,0,0]=>30 [1,1,1,1,0,0,1,0,1,0,0,0]=>30 [1,1,1,1,0,0,1,1,0,0,0,0]=>15 [1,1,1,1,0,1,0,0,0,0,1,0]=>30 [1,1,1,1,0,1,0,0,0,1,0,0]=>30 [1,1,1,1,0,1,0,0,1,0,0,0]=>30 [1,1,1,1,0,1,0,1,0,0,0,0]=>30 [1,1,1,1,0,1,1,0,0,0,0,0]=>15 [1,1,1,1,1,0,0,0,0,0,1,0]=>6 [1,1,1,1,1,0,0,0,0,1,0,0]=>6 [1,1,1,1,1,0,0,0,1,0,0,0]=>6 [1,1,1,1,1,0,0,1,0,0,0,0]=>6 [1,1,1,1,1,0,1,0,0,0,0,0]=>6 [1,1,1,1,1,1,0,0,0,0,0,0]=>1
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The number of parking functions supported by a Dyck path.
One representation of a parking function is as a pair consisting of a Dyck path and a permutation $\pi$ such that if $[a_0, a_1, \dots, a_{n-1}]$ is the area sequence of the Dyck path then the permutation $\pi$ satisfies $pi_i < pi_{i+1}$ whenever $a_{i} < a_{i+1}$. This statistic counts the number of permutations $\pi$ which satisfy this condition.
Code
def statistic(x):
    return x.number_of_parking_functions()
Created
Sep 27, 2011 at 19:31 by Chris Berg
Updated
Dec 11, 2015 at 16:42 by Veronica Waite