edit this statistic or download as text // json
Identifier
  • St000015: Dyck paths ⟶ ℤ (values match St000053The number of valleys of the Dyck path., St001068Number of torsionless simple modules in the corresponding Nakayama algebra., St001169Number of simple modules with projective dimension at least two in the corresponding Nakayama algebra.)
Values
=>
Cc0005;cc-rep
[1,0]=>1 [1,0,1,0]=>2 [1,1,0,0]=>1 [1,0,1,0,1,0]=>3 [1,0,1,1,0,0]=>2 [1,1,0,0,1,0]=>2 [1,1,0,1,0,0]=>2 [1,1,1,0,0,0]=>1 [1,0,1,0,1,0,1,0]=>4 [1,0,1,0,1,1,0,0]=>3 [1,0,1,1,0,0,1,0]=>3 [1,0,1,1,0,1,0,0]=>3 [1,0,1,1,1,0,0,0]=>2 [1,1,0,0,1,0,1,0]=>3 [1,1,0,0,1,1,0,0]=>2 [1,1,0,1,0,0,1,0]=>3 [1,1,0,1,0,1,0,0]=>3 [1,1,0,1,1,0,0,0]=>2 [1,1,1,0,0,0,1,0]=>2 [1,1,1,0,0,1,0,0]=>2 [1,1,1,0,1,0,0,0]=>2 [1,1,1,1,0,0,0,0]=>1 [1,0,1,0,1,0,1,0,1,0]=>5 [1,0,1,0,1,0,1,1,0,0]=>4 [1,0,1,0,1,1,0,0,1,0]=>4 [1,0,1,0,1,1,0,1,0,0]=>4 [1,0,1,0,1,1,1,0,0,0]=>3 [1,0,1,1,0,0,1,0,1,0]=>4 [1,0,1,1,0,0,1,1,0,0]=>3 [1,0,1,1,0,1,0,0,1,0]=>4 [1,0,1,1,0,1,0,1,0,0]=>4 [1,0,1,1,0,1,1,0,0,0]=>3 [1,0,1,1,1,0,0,0,1,0]=>3 [1,0,1,1,1,0,0,1,0,0]=>3 [1,0,1,1,1,0,1,0,0,0]=>3 [1,0,1,1,1,1,0,0,0,0]=>2 [1,1,0,0,1,0,1,0,1,0]=>4 [1,1,0,0,1,0,1,1,0,0]=>3 [1,1,0,0,1,1,0,0,1,0]=>3 [1,1,0,0,1,1,0,1,0,0]=>3 [1,1,0,0,1,1,1,0,0,0]=>2 [1,1,0,1,0,0,1,0,1,0]=>4 [1,1,0,1,0,0,1,1,0,0]=>3 [1,1,0,1,0,1,0,0,1,0]=>4 [1,1,0,1,0,1,0,1,0,0]=>4 [1,1,0,1,0,1,1,0,0,0]=>3 [1,1,0,1,1,0,0,0,1,0]=>3 [1,1,0,1,1,0,0,1,0,0]=>3 [1,1,0,1,1,0,1,0,0,0]=>3 [1,1,0,1,1,1,0,0,0,0]=>2 [1,1,1,0,0,0,1,0,1,0]=>3 [1,1,1,0,0,0,1,1,0,0]=>2 [1,1,1,0,0,1,0,0,1,0]=>3 [1,1,1,0,0,1,0,1,0,0]=>3 [1,1,1,0,0,1,1,0,0,0]=>2 [1,1,1,0,1,0,0,0,1,0]=>3 [1,1,1,0,1,0,0,1,0,0]=>3 [1,1,1,0,1,0,1,0,0,0]=>3 [1,1,1,0,1,1,0,0,0,0]=>2 [1,1,1,1,0,0,0,0,1,0]=>2 [1,1,1,1,0,0,0,1,0,0]=>2 [1,1,1,1,0,0,1,0,0,0]=>2 [1,1,1,1,0,1,0,0,0,0]=>2 [1,1,1,1,1,0,0,0,0,0]=>1 [1,0,1,0,1,0,1,0,1,0,1,0]=>6 [1,0,1,0,1,0,1,0,1,1,0,0]=>5 [1,0,1,0,1,0,1,1,0,0,1,0]=>5 [1,0,1,0,1,0,1,1,0,1,0,0]=>5 [1,0,1,0,1,0,1,1,1,0,0,0]=>4 [1,0,1,0,1,1,0,0,1,0,1,0]=>5 [1,0,1,0,1,1,0,0,1,1,0,0]=>4 [1,0,1,0,1,1,0,1,0,0,1,0]=>5 [1,0,1,0,1,1,0,1,0,1,0,0]=>5 [1,0,1,0,1,1,0,1,1,0,0,0]=>4 [1,0,1,0,1,1,1,0,0,0,1,0]=>4 [1,0,1,0,1,1,1,0,0,1,0,0]=>4 [1,0,1,0,1,1,1,0,1,0,0,0]=>4 [1,0,1,0,1,1,1,1,0,0,0,0]=>3 [1,0,1,1,0,0,1,0,1,0,1,0]=>5 [1,0,1,1,0,0,1,0,1,1,0,0]=>4 [1,0,1,1,0,0,1,1,0,0,1,0]=>4 [1,0,1,1,0,0,1,1,0,1,0,0]=>4 [1,0,1,1,0,0,1,1,1,0,0,0]=>3 [1,0,1,1,0,1,0,0,1,0,1,0]=>5 [1,0,1,1,0,1,0,0,1,1,0,0]=>4 [1,0,1,1,0,1,0,1,0,0,1,0]=>5 [1,0,1,1,0,1,0,1,0,1,0,0]=>5 [1,0,1,1,0,1,0,1,1,0,0,0]=>4 [1,0,1,1,0,1,1,0,0,0,1,0]=>4 [1,0,1,1,0,1,1,0,0,1,0,0]=>4 [1,0,1,1,0,1,1,0,1,0,0,0]=>4 [1,0,1,1,0,1,1,1,0,0,0,0]=>3 [1,0,1,1,1,0,0,0,1,0,1,0]=>4 [1,0,1,1,1,0,0,0,1,1,0,0]=>3 [1,0,1,1,1,0,0,1,0,0,1,0]=>4 [1,0,1,1,1,0,0,1,0,1,0,0]=>4 [1,0,1,1,1,0,0,1,1,0,0,0]=>3 [1,0,1,1,1,0,1,0,0,0,1,0]=>4 [1,0,1,1,1,0,1,0,0,1,0,0]=>4 [1,0,1,1,1,0,1,0,1,0,0,0]=>4 [1,0,1,1,1,0,1,1,0,0,0,0]=>3 [1,0,1,1,1,1,0,0,0,0,1,0]=>3 [1,0,1,1,1,1,0,0,0,1,0,0]=>3 [1,0,1,1,1,1,0,0,1,0,0,0]=>3 [1,0,1,1,1,1,0,1,0,0,0,0]=>3 [1,0,1,1,1,1,1,0,0,0,0,0]=>2 [1,1,0,0,1,0,1,0,1,0,1,0]=>5 [1,1,0,0,1,0,1,0,1,1,0,0]=>4 [1,1,0,0,1,0,1,1,0,0,1,0]=>4 [1,1,0,0,1,0,1,1,0,1,0,0]=>4 [1,1,0,0,1,0,1,1,1,0,0,0]=>3 [1,1,0,0,1,1,0,0,1,0,1,0]=>4 [1,1,0,0,1,1,0,0,1,1,0,0]=>3 [1,1,0,0,1,1,0,1,0,0,1,0]=>4 [1,1,0,0,1,1,0,1,0,1,0,0]=>4 [1,1,0,0,1,1,0,1,1,0,0,0]=>3 [1,1,0,0,1,1,1,0,0,0,1,0]=>3 [1,1,0,0,1,1,1,0,0,1,0,0]=>3 [1,1,0,0,1,1,1,0,1,0,0,0]=>3 [1,1,0,0,1,1,1,1,0,0,0,0]=>2 [1,1,0,1,0,0,1,0,1,0,1,0]=>5 [1,1,0,1,0,0,1,0,1,1,0,0]=>4 [1,1,0,1,0,0,1,1,0,0,1,0]=>4 [1,1,0,1,0,0,1,1,0,1,0,0]=>4 [1,1,0,1,0,0,1,1,1,0,0,0]=>3 [1,1,0,1,0,1,0,0,1,0,1,0]=>5 [1,1,0,1,0,1,0,0,1,1,0,0]=>4 [1,1,0,1,0,1,0,1,0,0,1,0]=>5 [1,1,0,1,0,1,0,1,0,1,0,0]=>5 [1,1,0,1,0,1,0,1,1,0,0,0]=>4 [1,1,0,1,0,1,1,0,0,0,1,0]=>4 [1,1,0,1,0,1,1,0,0,1,0,0]=>4 [1,1,0,1,0,1,1,0,1,0,0,0]=>4 [1,1,0,1,0,1,1,1,0,0,0,0]=>3 [1,1,0,1,1,0,0,0,1,0,1,0]=>4 [1,1,0,1,1,0,0,0,1,1,0,0]=>3 [1,1,0,1,1,0,0,1,0,0,1,0]=>4 [1,1,0,1,1,0,0,1,0,1,0,0]=>4 [1,1,0,1,1,0,0,1,1,0,0,0]=>3 [1,1,0,1,1,0,1,0,0,0,1,0]=>4 [1,1,0,1,1,0,1,0,0,1,0,0]=>4 [1,1,0,1,1,0,1,0,1,0,0,0]=>4 [1,1,0,1,1,0,1,1,0,0,0,0]=>3 [1,1,0,1,1,1,0,0,0,0,1,0]=>3 [1,1,0,1,1,1,0,0,0,1,0,0]=>3 [1,1,0,1,1,1,0,0,1,0,0,0]=>3 [1,1,0,1,1,1,0,1,0,0,0,0]=>3 [1,1,0,1,1,1,1,0,0,0,0,0]=>2 [1,1,1,0,0,0,1,0,1,0,1,0]=>4 [1,1,1,0,0,0,1,0,1,1,0,0]=>3 [1,1,1,0,0,0,1,1,0,0,1,0]=>3 [1,1,1,0,0,0,1,1,0,1,0,0]=>3 [1,1,1,0,0,0,1,1,1,0,0,0]=>2 [1,1,1,0,0,1,0,0,1,0,1,0]=>4 [1,1,1,0,0,1,0,0,1,1,0,0]=>3 [1,1,1,0,0,1,0,1,0,0,1,0]=>4 [1,1,1,0,0,1,0,1,0,1,0,0]=>4 [1,1,1,0,0,1,0,1,1,0,0,0]=>3 [1,1,1,0,0,1,1,0,0,0,1,0]=>3 [1,1,1,0,0,1,1,0,0,1,0,0]=>3 [1,1,1,0,0,1,1,0,1,0,0,0]=>3 [1,1,1,0,0,1,1,1,0,0,0,0]=>2 [1,1,1,0,1,0,0,0,1,0,1,0]=>4 [1,1,1,0,1,0,0,0,1,1,0,0]=>3 [1,1,1,0,1,0,0,1,0,0,1,0]=>4 [1,1,1,0,1,0,0,1,0,1,0,0]=>4 [1,1,1,0,1,0,0,1,1,0,0,0]=>3 [1,1,1,0,1,0,1,0,0,0,1,0]=>4 [1,1,1,0,1,0,1,0,0,1,0,0]=>4 [1,1,1,0,1,0,1,0,1,0,0,0]=>4 [1,1,1,0,1,0,1,1,0,0,0,0]=>3 [1,1,1,0,1,1,0,0,0,0,1,0]=>3 [1,1,1,0,1,1,0,0,0,1,0,0]=>3 [1,1,1,0,1,1,0,0,1,0,0,0]=>3 [1,1,1,0,1,1,0,1,0,0,0,0]=>3 [1,1,1,0,1,1,1,0,0,0,0,0]=>2 [1,1,1,1,0,0,0,0,1,0,1,0]=>3 [1,1,1,1,0,0,0,0,1,1,0,0]=>2 [1,1,1,1,0,0,0,1,0,0,1,0]=>3 [1,1,1,1,0,0,0,1,0,1,0,0]=>3 [1,1,1,1,0,0,0,1,1,0,0,0]=>2 [1,1,1,1,0,0,1,0,0,0,1,0]=>3 [1,1,1,1,0,0,1,0,0,1,0,0]=>3 [1,1,1,1,0,0,1,0,1,0,0,0]=>3 [1,1,1,1,0,0,1,1,0,0,0,0]=>2 [1,1,1,1,0,1,0,0,0,0,1,0]=>3 [1,1,1,1,0,1,0,0,0,1,0,0]=>3 [1,1,1,1,0,1,0,0,1,0,0,0]=>3 [1,1,1,1,0,1,0,1,0,0,0,0]=>3 [1,1,1,1,0,1,1,0,0,0,0,0]=>2 [1,1,1,1,1,0,0,0,0,0,1,0]=>2 [1,1,1,1,1,0,0,0,0,1,0,0]=>2 [1,1,1,1,1,0,0,0,1,0,0,0]=>2 [1,1,1,1,1,0,0,1,0,0,0,0]=>2 [1,1,1,1,1,0,1,0,0,0,0,0]=>2 [1,1,1,1,1,1,0,0,0,0,0,0]=>1
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The number of peaks of a Dyck path.
Code
def statistic(x):
    return x.number_of_peaks()
Created
Sep 27, 2011 at 19:32 by Chris Berg
Updated
Sep 13, 2014 at 20:34 by Martin Rubey