Identifier
- St000046: Integer partitions ⟶ ℤ
Values
=>
Cc0002;cc-rep
[1]=>1
[2]=>4
[1,1]=>0
[3]=>9
[2,1]=>4
[1,1,1]=>1
[4]=>16
[3,1]=>10
[2,2]=>4
[2,1,1]=>6
[1,1,1,1]=>0
[5]=>25
[4,1]=>18
[3,2]=>11
[3,1,1]=>13
[2,2,1]=>7
[2,1,1,1]=>6
[1,1,1,1,1]=>1
[6]=>36
[5,1]=>28
[4,2]=>20
[4,1,1]=>22
[3,3]=>12
[3,2,1]=>15
[3,1,1,1]=>14
[2,2,2]=>8
[2,2,1,1]=>8
[2,1,1,1,1]=>8
[1,1,1,1,1,1]=>0
[7]=>49
[6,1]=>40
[5,2]=>31
[5,1,1]=>33
[4,3]=>22
[4,2,1]=>25
[4,1,1,1]=>24
[3,3,1]=>17
[3,2,2]=>17
[3,2,1,1]=>17
[3,1,1,1,1]=>17
[2,2,2,1]=>9
[2,2,1,1,1]=>9
[2,1,1,1,1,1]=>8
[1,1,1,1,1,1,1]=>1
[8]=>64
[7,1]=>54
[6,2]=>44
[6,1,1]=>46
[5,3]=>34
[5,2,1]=>37
[5,1,1,1]=>36
[4,4]=>24
[4,3,1]=>28
[4,2,2]=>28
[4,2,1,1]=>28
[4,1,1,1,1]=>28
[3,3,2]=>19
[3,3,1,1]=>19
[3,2,2,1]=>19
[3,2,1,1,1]=>19
[3,1,1,1,1,1]=>18
[2,2,2,2]=>10
[2,2,2,1,1]=>10
[2,2,1,1,1,1]=>10
[2,1,1,1,1,1,1]=>10
[1,1,1,1,1,1,1,1]=>0
[9]=>81
[8,1]=>70
[7,2]=>59
[7,1,1]=>61
[6,3]=>48
[6,2,1]=>51
[6,1,1,1]=>50
[5,4]=>37
[5,3,1]=>41
[5,2,2]=>41
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The largest eigenvalue of the random to random operator acting on the simple module corresponding to the given partition.
References
[1] Reyes, J.-C. U. Random walk, semi-direct products, and card shuffling MathSciNet:2703300
Code
class RandomToRandom: def __init__(self, n): self._n = n @cached_method def W(self): return SymmetricGroup(self._n) def cycle(self, i,j): """ EXAMPLES:: sage: RandomToRandom(5).cycle(2,4) (2,3,4) """ return self.W()([tuple(range(i,j+1))]) def r2r(self, i,j): """ EXAMPLES:: sage: R = RandomToRandom(4) sage: R.r2r(1,3,4) (1,2,4) sage: R.r2r(3,1,4) (1,4,2) sage: r2r(1,2,4) (1,4) sage: RandomToRandom(3).r2r(1,2,3) (1,3) """ return self.cycle(i,self._n) * (~self.cycle(j,self._n)) def operator(self, representation): """ EXAMPLES:: sage: R = RandomToRandom(3) sage: representation = attrcall("matrix") # emulates the natural representation sage: R.operator(representation) [5 1 3] [1 5 3] [3 3 3] sage: representation = R.W().algebra(QQ).monomial # emulates the regular representation sage: R.operator(representation) 3*B[()] + 2*B[(2,3)] + B[(1,2,3)] + B[(1,3,2)] + 2*B[(1,3)] sage: R.operator(Partition([2,1])) [2 2] [2 2] """ if isinstance(representation, Partition): assert representation.size() == self._n representation = SymmetricGroupRepresentation(representation) E = self.W().domain() return sum(representation(self.r2r(i,j)) for i in E for j in E) def max_eigenvalue_on_simple_representation(self, p): return max(self.operator(p).eigenvalues()) def max_eigenvalue_on_simple_representations(self): """ EXAMPLES:: sage: R = RandomToRandom(4) sage: dict(R.max_eigenvalue_on_simple_representations()) {[1, 1, 1, 1]: 0, [2, 1, 1]: 6, [2, 2]: 4, [3, 1]: 10, [4]: 16} sage: R = RandomToRandom(5) sage: dict(R.max_eigenvalue_on_simple_representations()) {[1, 1, 1, 1]: 0, [2, 1, 1]: 6, [2, 2]: 4, [3, 1]: 10, [4]: 16} """ from sage.sets.family import Family return Family(Partitions(self._n), self.max_eigenvalue_on_simple_representation) @cached_function def getRandomToRandom(n): return RandomToRandom(n) def statistic(L): n = sum(L) R = getRandomToRandom(n) d = R.max_eigenvalue_on_simple_representations() return d[L]
Created
Mar 22, 2013 at 22:05 by Nicolas M. ThiƩry
Updated
Dec 29, 2016 at 09:25 by Christian Stump
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!