Identifier
- St000063: Integer partitions ⟶ ℤ
Values
=>
Cc0002;cc-rep
[]=>1
[1]=>2
[2]=>3
[1,1]=>3
[3]=>4
[2,1]=>6
[1,1,1]=>4
[4]=>5
[3,1]=>8
[2,2]=>6
[2,1,1]=>8
[1,1,1,1]=>5
[5]=>6
[4,1]=>10
[3,2]=>12
[3,1,1]=>12
[2,2,1]=>12
[2,1,1,1]=>10
[1,1,1,1,1]=>6
[6]=>7
[5,1]=>12
[4,2]=>15
[4,1,1]=>15
[3,3]=>10
[3,2,1]=>24
[3,1,1,1]=>15
[2,2,2]=>10
[2,2,1,1]=>15
[2,1,1,1,1]=>12
[1,1,1,1,1,1]=>7
[7]=>8
[6,1]=>14
[5,2]=>18
[5,1,1]=>18
[4,3]=>20
[4,2,1]=>30
[4,1,1,1]=>20
[3,3,1]=>20
[3,2,2]=>20
[3,2,1,1]=>30
[3,1,1,1,1]=>18
[2,2,2,1]=>20
[2,2,1,1,1]=>18
[2,1,1,1,1,1]=>14
[1,1,1,1,1,1,1]=>8
[8]=>9
[7,1]=>16
[6,2]=>21
[6,1,1]=>21
[5,3]=>24
[5,2,1]=>36
[5,1,1,1]=>24
[4,4]=>15
[4,3,1]=>40
[4,2,2]=>30
[4,2,1,1]=>40
[4,1,1,1,1]=>24
[3,3,2]=>30
[3,3,1,1]=>30
[3,2,2,1]=>40
[3,2,1,1,1]=>36
[3,1,1,1,1,1]=>21
[2,2,2,2]=>15
[2,2,2,1,1]=>24
[2,2,1,1,1,1]=>21
[2,1,1,1,1,1,1]=>16
[1,1,1,1,1,1,1,1]=>9
[9]=>10
[8,1]=>18
[7,2]=>24
[7,1,1]=>24
[6,3]=>28
[6,2,1]=>42
[6,1,1,1]=>28
[5,4]=>30
[5,3,1]=>48
[5,2,2]=>36
[5,2,1,1]=>48
[5,1,1,1,1]=>30
[4,4,1]=>30
[4,3,2]=>60
[4,3,1,1]=>60
[4,2,2,1]=>60
[4,2,1,1,1]=>48
[4,1,1,1,1,1]=>28
[3,3,3]=>20
[3,3,2,1]=>60
[3,3,1,1,1]=>36
[3,2,2,2]=>30
[3,2,2,1,1]=>48
[3,2,1,1,1,1]=>42
[3,1,1,1,1,1,1]=>24
[2,2,2,2,1]=>30
[2,2,2,1,1,1]=>28
[2,2,1,1,1,1,1]=>24
[2,1,1,1,1,1,1,1]=>18
[1,1,1,1,1,1,1,1,1]=>10
[10]=>11
[9,1]=>20
[8,2]=>27
[8,1,1]=>27
[7,3]=>32
[7,2,1]=>48
[7,1,1,1]=>32
[6,4]=>35
[6,3,1]=>56
[6,2,2]=>42
[6,2,1,1]=>56
[6,1,1,1,1]=>35
[5,5]=>21
[5,4,1]=>60
[5,3,2]=>72
[5,3,1,1]=>72
[5,2,2,1]=>72
[5,2,1,1,1]=>60
[5,1,1,1,1,1]=>35
[4,4,2]=>45
[4,4,1,1]=>45
[4,3,3]=>40
[4,3,2,1]=>120
[4,3,1,1,1]=>72
[4,2,2,2]=>45
[4,2,2,1,1]=>72
[4,2,1,1,1,1]=>56
[4,1,1,1,1,1,1]=>32
[3,3,3,1]=>40
[3,3,2,2]=>45
[3,3,2,1,1]=>72
[3,3,1,1,1,1]=>42
[3,2,2,2,1]=>60
[3,2,2,1,1,1]=>56
[3,2,1,1,1,1,1]=>48
[3,1,1,1,1,1,1,1]=>27
[2,2,2,2,2]=>21
[2,2,2,2,1,1]=>35
[2,2,2,1,1,1,1]=>32
[2,2,1,1,1,1,1,1]=>27
[2,1,1,1,1,1,1,1,1]=>20
[1,1,1,1,1,1,1,1,1,1]=>11
[11]=>12
[10,1]=>22
[9,2]=>30
[9,1,1]=>30
[8,3]=>36
[8,2,1]=>54
[8,1,1,1]=>36
[7,4]=>40
[7,3,1]=>64
[7,2,2]=>48
[7,2,1,1]=>64
[7,1,1,1,1]=>40
[6,5]=>42
[6,4,1]=>70
[6,3,2]=>84
[6,3,1,1]=>84
[6,2,2,1]=>84
[6,2,1,1,1]=>70
[6,1,1,1,1,1]=>42
[5,5,1]=>42
[5,4,2]=>90
[5,4,1,1]=>90
[5,3,3]=>60
[5,3,2,1]=>144
[5,3,1,1,1]=>90
[5,2,2,2]=>60
[5,2,2,1,1]=>90
[5,2,1,1,1,1]=>70
[5,1,1,1,1,1,1]=>40
[4,4,3]=>60
[4,4,2,1]=>90
[4,4,1,1,1]=>60
[4,3,3,1]=>80
[4,3,2,2]=>90
[4,3,2,1,1]=>144
[4,3,1,1,1,1]=>84
[4,2,2,2,1]=>90
[4,2,2,1,1,1]=>84
[4,2,1,1,1,1,1]=>64
[4,1,1,1,1,1,1,1]=>36
[3,3,3,2]=>60
[3,3,3,1,1]=>60
[3,3,2,2,1]=>90
[3,3,2,1,1,1]=>84
[3,3,1,1,1,1,1]=>48
[3,2,2,2,2]=>42
[3,2,2,2,1,1]=>70
[3,2,2,1,1,1,1]=>64
[3,2,1,1,1,1,1,1]=>54
[3,1,1,1,1,1,1,1,1]=>30
[2,2,2,2,2,1]=>42
[2,2,2,2,1,1,1]=>40
[2,2,2,1,1,1,1,1]=>36
[2,2,1,1,1,1,1,1,1]=>30
[2,1,1,1,1,1,1,1,1,1]=>22
[1,1,1,1,1,1,1,1,1,1,1]=>12
[12]=>13
[11,1]=>24
[10,2]=>33
[10,1,1]=>33
[9,3]=>40
[9,2,1]=>60
[9,1,1,1]=>40
[8,4]=>45
[8,3,1]=>72
[8,2,2]=>54
[8,2,1,1]=>72
[8,1,1,1,1]=>45
[7,5]=>48
[7,4,1]=>80
[7,3,2]=>96
[7,3,1,1]=>96
[7,2,2,1]=>96
[7,2,1,1,1]=>80
[7,1,1,1,1,1]=>48
[6,6]=>28
[6,5,1]=>84
[6,4,2]=>105
[6,4,1,1]=>105
[6,3,3]=>70
[6,3,2,1]=>168
[6,3,1,1,1]=>105
[6,2,2,2]=>70
[6,2,2,1,1]=>105
[6,2,1,1,1,1]=>84
[6,1,1,1,1,1,1]=>48
[5,5,2]=>63
[5,5,1,1]=>63
[5,4,3]=>120
[5,4,2,1]=>180
[5,4,1,1,1]=>120
[5,3,3,1]=>120
[5,3,2,2]=>120
[5,3,2,1,1]=>180
[5,3,1,1,1,1]=>105
[5,2,2,2,1]=>120
[5,2,2,1,1,1]=>105
[5,2,1,1,1,1,1]=>80
[5,1,1,1,1,1,1,1]=>45
[4,4,4]=>35
[4,4,3,1]=>120
[4,4,2,2]=>90
[4,4,2,1,1]=>120
[4,4,1,1,1,1]=>70
[4,3,3,2]=>120
[4,3,3,1,1]=>120
[4,3,2,2,1]=>180
[4,3,2,1,1,1]=>168
[4,3,1,1,1,1,1]=>96
[4,2,2,2,2]=>63
[4,2,2,2,1,1]=>105
[4,2,2,1,1,1,1]=>96
[4,2,1,1,1,1,1,1]=>72
[4,1,1,1,1,1,1,1,1]=>40
[3,3,3,3]=>35
[3,3,3,2,1]=>120
[3,3,3,1,1,1]=>70
[3,3,2,2,2]=>63
[3,3,2,2,1,1]=>105
[3,3,2,1,1,1,1]=>96
[3,3,1,1,1,1,1,1]=>54
[3,2,2,2,2,1]=>84
[3,2,2,2,1,1,1]=>80
[3,2,2,1,1,1,1,1]=>72
[3,2,1,1,1,1,1,1,1]=>60
[3,1,1,1,1,1,1,1,1,1]=>33
[2,2,2,2,2,2]=>28
[2,2,2,2,2,1,1]=>48
[2,2,2,2,1,1,1,1]=>45
[2,2,2,1,1,1,1,1,1]=>40
[2,2,1,1,1,1,1,1,1,1]=>33
[2,1,1,1,1,1,1,1,1,1,1]=>24
[1,1,1,1,1,1,1,1,1,1,1,1]=>13
[5,4,3,1]=>240
[5,4,2,2]=>180
[5,4,2,1,1]=>240
[5,3,3,2]=>180
[5,3,3,1,1]=>180
[5,3,2,2,1]=>240
[4,4,3,2]=>180
[4,4,3,1,1]=>180
[4,4,2,2,1]=>180
[4,3,3,2,1]=>240
[5,4,3,2]=>360
[5,4,3,1,1]=>360
[5,4,2,2,1]=>360
[5,3,3,2,1]=>360
[4,4,3,2,1]=>360
[5,4,3,2,1]=>720
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of linear extensions of a certain poset defined for an integer partition.
The poset is constructed in David Speyer's answer to Matt Fayers' question [3].
The value at the partition $\lambda$ also counts cover-inclusive Dyck tilings of $\lambda\setminus\mu$, summed over all $\mu$, as noticed by Philippe Nadeau in a comment.
This statistic arises in the homogeneous Garnir relations for the universal graded Specht modules for cyclotomic quiver Hecke algebras.
The poset is constructed in David Speyer's answer to Matt Fayers' question [3].
The value at the partition $\lambda$ also counts cover-inclusive Dyck tilings of $\lambda\setminus\mu$, summed over all $\mu$, as noticed by Philippe Nadeau in a comment.
This statistic arises in the homogeneous Garnir relations for the universal graded Specht modules for cyclotomic quiver Hecke algebras.
References
[1] Fayers, M. Dyck tilings and the homogeneous Garnir relations for graded Specht modules arXiv:1309.6467
[2] Kenyon, R. W., Wilson, D. B. Double-dimer pairings and skew Young diagrams MathSciNet:2811099
[3] Fayers, M. A function from partitions to natural numbers - is it familiar? MathOverflow:132338
[2] Kenyon, R. W., Wilson, D. B. Double-dimer pairings and skew Young diagrams MathSciNet:2811099
[3] Fayers, M. A function from partitions to natural numbers - is it familiar? MathOverflow:132338
Code
def statistic( P ): if P.is_empty(): return 1 cells = P.cells() m = max( i+j for i,j in cells ) found_max = False while found_max is False: i,j = cells.pop() if i+j == m: found_max = True P1 = Partition( P[i+1:] ) P2 = Partition( P.conjugate()[j+1:] ).conjugate() return binomial(i+j+2,i+1)*statistic(P1)*statistic(P2)
Created
May 31, 2013 at 11:49 by Christian Stump
Updated
Mar 19, 2019 at 23:37 by Martin Rubey
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!