Identifier
- St000083: Binary trees ⟶ ℤ
Values
=>
Cc0010;cc-rep
[.,[.,.]]=>1
[[.,.],.]=>0
[.,[.,[.,.]]]=>2
[.,[[.,.],.]]=>1
[[.,.],[.,.]]=>1
[[.,[.,.]],.]=>1
[[[.,.],.],.]=>0
[.,[.,[.,[.,.]]]]=>3
[.,[.,[[.,.],.]]]=>2
[.,[[.,.],[.,.]]]=>2
[.,[[.,[.,.]],.]]=>2
[.,[[[.,.],.],.]]=>1
[[.,.],[.,[.,.]]]=>2
[[.,.],[[.,.],.]]=>1
[[.,[.,.]],[.,.]]=>2
[[[.,.],.],[.,.]]=>1
[[.,[.,[.,.]]],.]=>2
[[.,[[.,.],.]],.]=>1
[[[.,.],[.,.]],.]=>1
[[[.,[.,.]],.],.]=>1
[[[[.,.],.],.],.]=>0
[.,[.,[.,[.,[.,.]]]]]=>4
[.,[.,[.,[[.,.],.]]]]=>3
[.,[.,[[.,.],[.,.]]]]=>3
[.,[.,[[.,[.,.]],.]]]=>3
[.,[.,[[[.,.],.],.]]]=>2
[.,[[.,.],[.,[.,.]]]]=>3
[.,[[.,.],[[.,.],.]]]=>2
[.,[[.,[.,.]],[.,.]]]=>3
[.,[[[.,.],.],[.,.]]]=>2
[.,[[.,[.,[.,.]]],.]]=>3
[.,[[.,[[.,.],.]],.]]=>2
[.,[[[.,.],[.,.]],.]]=>2
[.,[[[.,[.,.]],.],.]]=>2
[.,[[[[.,.],.],.],.]]=>1
[[.,.],[.,[.,[.,.]]]]=>3
[[.,.],[.,[[.,.],.]]]=>2
[[.,.],[[.,.],[.,.]]]=>2
[[.,.],[[.,[.,.]],.]]=>2
[[.,.],[[[.,.],.],.]]=>1
[[.,[.,.]],[.,[.,.]]]=>3
[[.,[.,.]],[[.,.],.]]=>2
[[[.,.],.],[.,[.,.]]]=>2
[[[.,.],.],[[.,.],.]]=>1
[[.,[.,[.,.]]],[.,.]]=>3
[[.,[[.,.],.]],[.,.]]=>2
[[[.,.],[.,.]],[.,.]]=>2
[[[.,[.,.]],.],[.,.]]=>2
[[[[.,.],.],.],[.,.]]=>1
[[.,[.,[.,[.,.]]]],.]=>3
[[.,[.,[[.,.],.]]],.]=>2
[[.,[[.,.],[.,.]]],.]=>2
[[.,[[.,[.,.]],.]],.]=>2
[[.,[[[.,.],.],.]],.]=>1
[[[.,.],[.,[.,.]]],.]=>2
[[[.,.],[[.,.],.]],.]=>1
[[[.,[.,.]],[.,.]],.]=>2
[[[[.,.],.],[.,.]],.]=>1
[[[.,[.,[.,.]]],.],.]=>2
[[[.,[[.,.],.]],.],.]=>1
[[[[.,.],[.,.]],.],.]=>1
[[[[.,[.,.]],.],.],.]=>1
[[[[[.,.],.],.],.],.]=>0
[.,[.,[.,[.,[.,[.,.]]]]]]=>5
[.,[.,[.,[.,[[.,.],.]]]]]=>4
[.,[.,[.,[[.,.],[.,.]]]]]=>4
[.,[.,[.,[[.,[.,.]],.]]]]=>4
[.,[.,[.,[[[.,.],.],.]]]]=>3
[.,[.,[[.,.],[.,[.,.]]]]]=>4
[.,[.,[[.,.],[[.,.],.]]]]=>3
[.,[.,[[.,[.,.]],[.,.]]]]=>4
[.,[.,[[[.,.],.],[.,.]]]]=>3
[.,[.,[[.,[.,[.,.]]],.]]]=>4
[.,[.,[[.,[[.,.],.]],.]]]=>3
[.,[.,[[[.,.],[.,.]],.]]]=>3
[.,[.,[[[.,[.,.]],.],.]]]=>3
[.,[.,[[[[.,.],.],.],.]]]=>2
[.,[[.,.],[.,[.,[.,.]]]]]=>4
[.,[[.,.],[.,[[.,.],.]]]]=>3
[.,[[.,.],[[.,.],[.,.]]]]=>3
[.,[[.,.],[[.,[.,.]],.]]]=>3
[.,[[.,.],[[[.,.],.],.]]]=>2
[.,[[.,[.,.]],[.,[.,.]]]]=>4
[.,[[.,[.,.]],[[.,.],.]]]=>3
[.,[[[.,.],.],[.,[.,.]]]]=>3
[.,[[[.,.],.],[[.,.],.]]]=>2
[.,[[.,[.,[.,.]]],[.,.]]]=>4
[.,[[.,[[.,.],.]],[.,.]]]=>3
[.,[[[.,.],[.,.]],[.,.]]]=>3
[.,[[[.,[.,.]],.],[.,.]]]=>3
[.,[[[[.,.],.],.],[.,.]]]=>2
[.,[[.,[.,[.,[.,.]]]],.]]=>4
[.,[[.,[.,[[.,.],.]]],.]]=>3
[.,[[.,[[.,.],[.,.]]],.]]=>3
[.,[[.,[[.,[.,.]],.]],.]]=>3
[.,[[.,[[[.,.],.],.]],.]]=>2
[.,[[[.,.],[.,[.,.]]],.]]=>3
[.,[[[.,.],[[.,.],.]],.]]=>2
[.,[[[.,[.,.]],[.,.]],.]]=>3
[.,[[[[.,.],.],[.,.]],.]]=>2
[.,[[[.,[.,[.,.]]],.],.]]=>3
[.,[[[.,[[.,.],.]],.],.]]=>2
[.,[[[[.,.],[.,.]],.],.]]=>2
[.,[[[[.,[.,.]],.],.],.]]=>2
[.,[[[[[.,.],.],.],.],.]]=>1
[[.,.],[.,[.,[.,[.,.]]]]]=>4
[[.,.],[.,[.,[[.,.],.]]]]=>3
[[.,.],[.,[[.,.],[.,.]]]]=>3
[[.,.],[.,[[.,[.,.]],.]]]=>3
[[.,.],[.,[[[.,.],.],.]]]=>2
[[.,.],[[.,.],[.,[.,.]]]]=>3
[[.,.],[[.,.],[[.,.],.]]]=>2
[[.,.],[[.,[.,.]],[.,.]]]=>3
[[.,.],[[[.,.],.],[.,.]]]=>2
[[.,.],[[.,[.,[.,.]]],.]]=>3
[[.,.],[[.,[[.,.],.]],.]]=>2
[[.,.],[[[.,.],[.,.]],.]]=>2
[[.,.],[[[.,[.,.]],.],.]]=>2
[[.,.],[[[[.,.],.],.],.]]=>1
[[.,[.,.]],[.,[.,[.,.]]]]=>4
[[.,[.,.]],[.,[[.,.],.]]]=>3
[[.,[.,.]],[[.,.],[.,.]]]=>3
[[.,[.,.]],[[.,[.,.]],.]]=>3
[[.,[.,.]],[[[.,.],.],.]]=>2
[[[.,.],.],[.,[.,[.,.]]]]=>3
[[[.,.],.],[.,[[.,.],.]]]=>2
[[[.,.],.],[[.,.],[.,.]]]=>2
[[[.,.],.],[[.,[.,.]],.]]=>2
[[[.,.],.],[[[.,.],.],.]]=>1
[[.,[.,[.,.]]],[.,[.,.]]]=>4
[[.,[.,[.,.]]],[[.,.],.]]=>3
[[.,[[.,.],.]],[.,[.,.]]]=>3
[[.,[[.,.],.]],[[.,.],.]]=>2
[[[.,.],[.,.]],[.,[.,.]]]=>3
[[[.,.],[.,.]],[[.,.],.]]=>2
[[[.,[.,.]],.],[.,[.,.]]]=>3
[[[.,[.,.]],.],[[.,.],.]]=>2
[[[[.,.],.],.],[.,[.,.]]]=>2
[[[[.,.],.],.],[[.,.],.]]=>1
[[.,[.,[.,[.,.]]]],[.,.]]=>4
[[.,[.,[[.,.],.]]],[.,.]]=>3
[[.,[[.,.],[.,.]]],[.,.]]=>3
[[.,[[.,[.,.]],.]],[.,.]]=>3
[[.,[[[.,.],.],.]],[.,.]]=>2
[[[.,.],[.,[.,.]]],[.,.]]=>3
[[[.,.],[[.,.],.]],[.,.]]=>2
[[[.,[.,.]],[.,.]],[.,.]]=>3
[[[[.,.],.],[.,.]],[.,.]]=>2
[[[.,[.,[.,.]]],.],[.,.]]=>3
[[[.,[[.,.],.]],.],[.,.]]=>2
[[[[.,.],[.,.]],.],[.,.]]=>2
[[[[.,[.,.]],.],.],[.,.]]=>2
[[[[[.,.],.],.],.],[.,.]]=>1
[[.,[.,[.,[.,[.,.]]]]],.]=>4
[[.,[.,[.,[[.,.],.]]]],.]=>3
[[.,[.,[[.,.],[.,.]]]],.]=>3
[[.,[.,[[.,[.,.]],.]]],.]=>3
[[.,[.,[[[.,.],.],.]]],.]=>2
[[.,[[.,.],[.,[.,.]]]],.]=>3
[[.,[[.,.],[[.,.],.]]],.]=>2
[[.,[[.,[.,.]],[.,.]]],.]=>3
[[.,[[[.,.],.],[.,.]]],.]=>2
[[.,[[.,[.,[.,.]]],.]],.]=>3
[[.,[[.,[[.,.],.]],.]],.]=>2
[[.,[[[.,.],[.,.]],.]],.]=>2
[[.,[[[.,[.,.]],.],.]],.]=>2
[[.,[[[[.,.],.],.],.]],.]=>1
[[[.,.],[.,[.,[.,.]]]],.]=>3
[[[.,.],[.,[[.,.],.]]],.]=>2
[[[.,.],[[.,.],[.,.]]],.]=>2
[[[.,.],[[.,[.,.]],.]],.]=>2
[[[.,.],[[[.,.],.],.]],.]=>1
[[[.,[.,.]],[.,[.,.]]],.]=>3
[[[.,[.,.]],[[.,.],.]],.]=>2
[[[[.,.],.],[.,[.,.]]],.]=>2
[[[[.,.],.],[[.,.],.]],.]=>1
[[[.,[.,[.,.]]],[.,.]],.]=>3
[[[.,[[.,.],.]],[.,.]],.]=>2
[[[[.,.],[.,.]],[.,.]],.]=>2
[[[[.,[.,.]],.],[.,.]],.]=>2
[[[[[.,.],.],.],[.,.]],.]=>1
[[[.,[.,[.,[.,.]]]],.],.]=>3
[[[.,[.,[[.,.],.]]],.],.]=>2
[[[.,[[.,.],[.,.]]],.],.]=>2
[[[.,[[.,[.,.]],.]],.],.]=>2
[[[.,[[[.,.],.],.]],.],.]=>1
[[[[.,.],[.,[.,.]]],.],.]=>2
[[[[.,.],[[.,.],.]],.],.]=>1
[[[[.,[.,.]],[.,.]],.],.]=>2
[[[[[.,.],.],[.,.]],.],.]=>1
[[[[.,[.,[.,.]]],.],.],.]=>2
[[[[.,[[.,.],.]],.],.],.]=>1
[[[[[.,.],[.,.]],.],.],.]=>1
[[[[[.,[.,.]],.],.],.],.]=>1
[[[[[[.,.],.],.],.],.],.]=>0
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of left oriented leafs of a binary tree except the first one.
In other other words, this is the sum of canopee vector of the tree.
The canopee of a non empty binary tree T with n internal nodes is the list l of 0 and 1 of length n-1 obtained by going along the leaves of T from left to right except the two extremal ones, writing 0 if the leaf is a right leaf and 1 if the leaf is a left leaf.
This is also the number of nodes having a right child. Indeed each of said right children will give exactly one left oriented leaf.
In other other words, this is the sum of canopee vector of the tree.
The canopee of a non empty binary tree T with n internal nodes is the list l of 0 and 1 of length n-1 obtained by going along the leaves of T from left to right except the two extremal ones, writing 0 if the leaf is a right leaf and 1 if the leaf is a left leaf.
This is also the number of nodes having a right child. Indeed each of said right children will give exactly one left oriented leaf.
Code
def statistic(bt): return sum(bt.canopee())
Created
Jun 13, 2013 at 10:02 by Viviane Pons
Updated
Oct 17, 2015 at 10:48 by Christian Stump
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!