edit this statistic or download as text // json
Identifier
Values
=>
Cc0020;cc-rep
([],1)=>0 ([],2)=>0 ([(0,1)],2)=>0 ([],3)=>0 ([(1,2)],3)=>0 ([(0,2),(1,2)],3)=>0 ([(0,1),(0,2),(1,2)],3)=>1 ([],4)=>0 ([(2,3)],4)=>0 ([(1,3),(2,3)],4)=>0 ([(0,3),(1,3),(2,3)],4)=>0 ([(0,3),(1,2)],4)=>0 ([(0,3),(1,2),(2,3)],4)=>0 ([(1,2),(1,3),(2,3)],4)=>1 ([(0,3),(1,2),(1,3),(2,3)],4)=>1 ([(0,2),(0,3),(1,2),(1,3)],4)=>0 ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)=>2 ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)=>4 ([],5)=>0 ([(3,4)],5)=>0 ([(2,4),(3,4)],5)=>0 ([(1,4),(2,4),(3,4)],5)=>0 ([(0,4),(1,4),(2,4),(3,4)],5)=>0 ([(1,4),(2,3)],5)=>0 ([(1,4),(2,3),(3,4)],5)=>0 ([(0,1),(2,4),(3,4)],5)=>0 ([(2,3),(2,4),(3,4)],5)=>1 ([(0,4),(1,4),(2,3),(3,4)],5)=>0 ([(1,4),(2,3),(2,4),(3,4)],5)=>1 ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)=>1 ([(1,3),(1,4),(2,3),(2,4)],5)=>0 ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)=>0 ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>2 ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)=>1 ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>2 ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)=>0 ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>3 ([(0,4),(1,3),(2,3),(2,4)],5)=>0 ([(0,1),(2,3),(2,4),(3,4)],5)=>1 ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)=>1 ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)=>2 ([(0,3),(0,4),(1,2),(1,4),(2,3)],5)=>0 ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)=>1 ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)=>3 ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)=>2 ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>4 ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>4 ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>5 ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)=>2 ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)=>4 ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>7 ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>10 ([],6)=>0 ([(4,5)],6)=>0 ([(3,5),(4,5)],6)=>0 ([(2,5),(3,5),(4,5)],6)=>0 ([(1,5),(2,5),(3,5),(4,5)],6)=>0 ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)=>0 ([(2,5),(3,4)],6)=>0 ([(2,5),(3,4),(4,5)],6)=>0 ([(1,2),(3,5),(4,5)],6)=>0 ([(3,4),(3,5),(4,5)],6)=>1 ([(1,5),(2,5),(3,4),(4,5)],6)=>0 ([(0,1),(2,5),(3,5),(4,5)],6)=>0 ([(2,5),(3,4),(3,5),(4,5)],6)=>1 ([(0,5),(1,5),(2,5),(3,4),(4,5)],6)=>0 ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)=>1 ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)=>1 ([(2,4),(2,5),(3,4),(3,5)],6)=>0 ([(0,5),(1,5),(2,4),(3,4)],6)=>0 ([(1,5),(2,3),(2,4),(3,5),(4,5)],6)=>0 ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)=>0 ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>2 ([(1,5),(2,4),(3,4),(3,5),(4,5)],6)=>1 ([(0,5),(1,5),(2,4),(3,4),(4,5)],6)=>0 ([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)=>0 ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>2 ([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)=>1 ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>2 ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)=>0 ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)=>0 ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)=>0 ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>3 ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>2 ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>3 ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)=>0 ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>4 ([(0,5),(1,4),(2,3)],6)=>0 ([(1,5),(2,4),(3,4),(3,5)],6)=>0 ([(0,1),(2,5),(3,4),(4,5)],6)=>0 ([(1,2),(3,4),(3,5),(4,5)],6)=>1 ([(0,5),(1,4),(2,3),(3,5),(4,5)],6)=>0 ([(1,4),(2,3),(2,5),(3,5),(4,5)],6)=>1 ([(0,1),(2,5),(3,4),(3,5),(4,5)],6)=>1 ([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)=>1 ([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)=>2 ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)=>2 ([(1,4),(1,5),(2,3),(2,5),(3,4)],6)=>0 ([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)=>0 ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)=>1 ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)=>0 ([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>2 ([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6)=>1 ([(0,5),(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)=>1 ([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>2 ([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)=>3 ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)=>3 ([(0,5),(1,4),(2,3),(2,4),(3,5)],6)=>0 ([(0,1),(2,4),(2,5),(3,4),(3,5)],6)=>0 ([(0,5),(1,5),(2,3),(2,4),(3,4)],6)=>1 ([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)=>0 ([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5)],6)=>1 ([(0,4),(1,2),(2,5),(3,4),(3,5),(4,5)],6)=>1 ([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>2 ([(0,4),(1,4),(2,3),(2,5),(3,5),(4,5)],6)=>1 ([(0,3),(0,4),(1,2),(1,5),(2,5),(3,5),(4,5)],6)=>1 ([(0,3),(1,4),(1,5),(2,4),(2,5),(3,5),(4,5)],6)=>2 ([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5),(4,5)],6)=>2 ([(0,1),(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>3 ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>4 ([(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>2 ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>4 ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>4 ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)=>0 ([(0,3),(0,5),(1,3),(1,5),(2,4),(2,5),(3,4),(4,5)],6)=>1 ([(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>3 ([(0,5),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>3 ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>2 ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)=>4 ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>2 ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>5 ([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>4 ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>5 ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>2 ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>6 ([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)=>0 ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>2 ([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,5),(4,5)],6)=>2 ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)=>4 ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)=>4 ([(0,4),(0,5),(1,2),(1,3),(2,5),(3,4)],6)=>0 ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)=>0 ([(0,5),(1,2),(1,4),(2,3),(3,4),(3,5),(4,5)],6)=>1 ([(0,1),(0,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)=>1 ([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>2 ([(0,5),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5)],6)=>1 ([(0,1),(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>2 ([(0,4),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)=>3 ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,5),(4,5)],6)=>2 ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)=>4 ([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6)=>0 ([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)=>2 ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5)],6)=>2 ([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>3 ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>5 ([(0,5),(1,2),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>4 ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>7 ([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>5 ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>7 ([(0,4),(0,5),(1,2),(1,4),(2,3),(2,5),(3,4),(3,5),(4,5)],6)=>3 ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>4 ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>6 ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>8 ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)=>0 ([(0,1),(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>3 ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>4 ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)=>6 ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>10 ([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6)=>2 ([(0,2),(1,4),(1,5),(2,3),(3,4),(3,5),(4,5)],6)=>2 ([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(4,5)],6)=>2 ([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>4 ([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>3 ([(0,1),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>4 ([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>5 ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,5),(3,4),(4,5)],6)=>2 ([(0,4),(0,5),(1,2),(1,3),(1,4),(2,3),(2,5),(3,5),(4,5)],6)=>3 ([(0,3),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>5 ([(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>4 ([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>4 ([(0,3),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>6 ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)=>4 ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>8 ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4)],6)=>1 ([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>2 ([(0,3),(0,4),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)=>3 ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)=>5 ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,4)],6)=>2 ([(0,1),(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>4 ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>5 ([(0,1),(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>7 ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>10 ([(0,2),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>5 ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>6 ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>8 ([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>7 ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>10 ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>10 ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>11 ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>13 ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>6 ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>7 ([(0,1),(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>6 ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)=>9 ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)=>8 ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>12 ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>16 ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>20
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The number of triangles of a graph.
A triangle $T$ of a graph $G$ is a collection of three vertices $\{u,v,w\} \in G$ such that they form $K_3$, the complete graph on three vertices.
Code
def statistic(g):
    return g.triangles_count()
Created
Jun 13, 2013 at 16:36 by Chris Berg
Updated
Dec 18, 2015 at 18:53 by Lane Morrison