Values
=>
Cc0020;cc-rep
([],1)=>0
([],2)=>0
([(0,1)],2)=>0
([],3)=>0
([(1,2)],3)=>0
([(0,2),(1,2)],3)=>0
([(0,1),(0,2),(1,2)],3)=>1
([],4)=>0
([(2,3)],4)=>0
([(1,3),(2,3)],4)=>0
([(0,3),(1,3),(2,3)],4)=>0
([(0,3),(1,2)],4)=>0
([(0,3),(1,2),(2,3)],4)=>0
([(1,2),(1,3),(2,3)],4)=>1
([(0,3),(1,2),(1,3),(2,3)],4)=>1
([(0,2),(0,3),(1,2),(1,3)],4)=>0
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)=>2
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)=>4
([],5)=>0
([(3,4)],5)=>0
([(2,4),(3,4)],5)=>0
([(1,4),(2,4),(3,4)],5)=>0
([(0,4),(1,4),(2,4),(3,4)],5)=>0
([(1,4),(2,3)],5)=>0
([(1,4),(2,3),(3,4)],5)=>0
([(0,1),(2,4),(3,4)],5)=>0
([(2,3),(2,4),(3,4)],5)=>1
([(0,4),(1,4),(2,3),(3,4)],5)=>0
([(1,4),(2,3),(2,4),(3,4)],5)=>1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)=>1
([(1,3),(1,4),(2,3),(2,4)],5)=>0
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)=>0
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>2
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)=>1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)=>0
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>3
([(0,4),(1,3),(2,3),(2,4)],5)=>0
([(0,1),(2,3),(2,4),(3,4)],5)=>1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)=>1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)=>2
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)=>0
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)=>1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)=>3
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)=>2
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>4
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>4
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>5
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)=>2
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)=>4
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>7
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>10
([],6)=>0
([(4,5)],6)=>0
([(3,5),(4,5)],6)=>0
([(2,5),(3,5),(4,5)],6)=>0
([(1,5),(2,5),(3,5),(4,5)],6)=>0
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)=>0
([(2,5),(3,4)],6)=>0
([(2,5),(3,4),(4,5)],6)=>0
([(1,2),(3,5),(4,5)],6)=>0
([(3,4),(3,5),(4,5)],6)=>1
([(1,5),(2,5),(3,4),(4,5)],6)=>0
([(0,1),(2,5),(3,5),(4,5)],6)=>0
([(2,5),(3,4),(3,5),(4,5)],6)=>1
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)=>0
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)=>1
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)=>1
([(2,4),(2,5),(3,4),(3,5)],6)=>0
([(0,5),(1,5),(2,4),(3,4)],6)=>0
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)=>0
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)=>0
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>2
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)=>1
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)=>0
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)=>0
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>2
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)=>1
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>2
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)=>0
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)=>0
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)=>0
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>3
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>2
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>3
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)=>0
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>4
([(0,5),(1,4),(2,3)],6)=>0
([(1,5),(2,4),(3,4),(3,5)],6)=>0
([(0,1),(2,5),(3,4),(4,5)],6)=>0
([(1,2),(3,4),(3,5),(4,5)],6)=>1
([(0,5),(1,4),(2,3),(3,5),(4,5)],6)=>0
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)=>1
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)=>1
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)=>1
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)=>2
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)=>2
([(1,4),(1,5),(2,3),(2,5),(3,4)],6)=>0
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)=>0
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)=>1
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)=>0
([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>2
([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6)=>1
([(0,5),(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)=>1
([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>2
([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)=>3
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)=>3
([(0,5),(1,4),(2,3),(2,4),(3,5)],6)=>0
([(0,1),(2,4),(2,5),(3,4),(3,5)],6)=>0
([(0,5),(1,5),(2,3),(2,4),(3,4)],6)=>1
([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)=>0
([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5)],6)=>1
([(0,4),(1,2),(2,5),(3,4),(3,5),(4,5)],6)=>1
([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>2
([(0,4),(1,4),(2,3),(2,5),(3,5),(4,5)],6)=>1
([(0,3),(0,4),(1,2),(1,5),(2,5),(3,5),(4,5)],6)=>1
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,5),(4,5)],6)=>2
([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5),(4,5)],6)=>2
([(0,1),(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>3
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>4
([(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>2
([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>4
([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>4
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)=>0
([(0,3),(0,5),(1,3),(1,5),(2,4),(2,5),(3,4),(4,5)],6)=>1
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>3
([(0,5),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>3
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>2
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)=>4
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>2
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>5
([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>4
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>5
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>2
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>6
([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)=>0
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>2
([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,5),(4,5)],6)=>2
([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)=>4
([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)=>4
([(0,4),(0,5),(1,2),(1,3),(2,5),(3,4)],6)=>0
([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)=>0
([(0,5),(1,2),(1,4),(2,3),(3,4),(3,5),(4,5)],6)=>1
([(0,1),(0,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)=>1
([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>2
([(0,5),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5)],6)=>1
([(0,1),(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>2
([(0,4),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)=>3
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,5),(4,5)],6)=>2
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)=>4
([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6)=>0
([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)=>2
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5)],6)=>2
([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>3
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>5
([(0,5),(1,2),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>4
([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>7
([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>5
([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>7
([(0,4),(0,5),(1,2),(1,4),(2,3),(2,5),(3,4),(3,5),(4,5)],6)=>3
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>4
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>6
([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>8
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)=>0
([(0,1),(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>3
([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>4
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)=>6
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>10
([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6)=>2
([(0,2),(1,4),(1,5),(2,3),(3,4),(3,5),(4,5)],6)=>2
([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(4,5)],6)=>2
([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>4
([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>3
([(0,1),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>4
([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>5
([(0,4),(0,5),(1,2),(1,3),(2,3),(2,5),(3,4),(4,5)],6)=>2
([(0,4),(0,5),(1,2),(1,3),(1,4),(2,3),(2,5),(3,5),(4,5)],6)=>3
([(0,3),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>5
([(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>4
([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>4
([(0,3),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>6
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)=>4
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>8
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4)],6)=>1
([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>2
([(0,3),(0,4),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)=>3
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)=>5
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,4)],6)=>2
([(0,1),(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>4
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>5
([(0,1),(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>7
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>10
([(0,2),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>5
([(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>6
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>8
([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>7
([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>10
([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>10
([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>11
([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>13
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>6
([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>7
([(0,1),(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>6
([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)=>9
([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)=>8
([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>12
([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>16
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>20
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of triangles of a graph.
A triangle $T$ of a graph $G$ is a collection of three vertices $\{u,v,w\} \in G$ such that they form $K_3$, the complete graph on three vertices.
A triangle $T$ of a graph $G$ is a collection of three vertices $\{u,v,w\} \in G$ such that they form $K_3$, the complete graph on three vertices.
Code
def statistic(g): return g.triangles_count()
Created
Jun 13, 2013 at 16:36 by Chris Berg
Updated
Dec 18, 2015 at 18:53 by Lane Morrison
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!