Identifier
- St000108: Integer partitions ⟶ ℤ
Values
=>
Cc0002;cc-rep
[]=>1
[1]=>2
[2]=>3
[1,1]=>3
[3]=>4
[2,1]=>5
[1,1,1]=>4
[4]=>5
[3,1]=>7
[2,2]=>6
[2,1,1]=>7
[1,1,1,1]=>5
[5]=>6
[4,1]=>9
[3,2]=>9
[3,1,1]=>10
[2,2,1]=>9
[2,1,1,1]=>9
[1,1,1,1,1]=>6
[6]=>7
[5,1]=>11
[4,2]=>12
[4,1,1]=>13
[3,3]=>10
[3,2,1]=>14
[3,1,1,1]=>13
[2,2,2]=>10
[2,2,1,1]=>12
[2,1,1,1,1]=>11
[1,1,1,1,1,1]=>7
[7]=>8
[6,1]=>13
[5,2]=>15
[5,1,1]=>16
[4,3]=>14
[4,2,1]=>19
[4,1,1,1]=>17
[3,3,1]=>16
[3,2,2]=>16
[3,2,1,1]=>19
[3,1,1,1,1]=>16
[2,2,2,1]=>14
[2,2,1,1,1]=>15
[2,1,1,1,1,1]=>13
[1,1,1,1,1,1,1]=>8
[8]=>9
[7,1]=>15
[6,2]=>18
[6,1,1]=>19
[5,3]=>18
[5,2,1]=>24
[5,1,1,1]=>21
[4,4]=>15
[4,3,1]=>23
[4,2,2]=>22
[4,2,1,1]=>26
[4,1,1,1,1]=>21
[3,3,2]=>19
[3,3,1,1]=>22
[3,2,2,1]=>23
[3,2,1,1,1]=>24
[3,1,1,1,1,1]=>19
[2,2,2,2]=>15
[2,2,2,1,1]=>18
[2,2,1,1,1,1]=>18
[2,1,1,1,1,1,1]=>15
[1,1,1,1,1,1,1,1]=>9
[9]=>10
[8,1]=>17
[7,2]=>21
[7,1,1]=>22
[6,3]=>22
[6,2,1]=>29
[6,1,1,1]=>25
[5,4]=>20
[5,3,1]=>30
[5,2,2]=>28
[5,2,1,1]=>33
[5,1,1,1,1]=>26
[4,4,1]=>25
[4,3,2]=>28
[4,3,1,1]=>32
[4,2,2,1]=>32
[4,2,1,1,1]=>33
[4,1,1,1,1,1]=>25
[3,3,3]=>20
[3,3,2,1]=>28
[3,3,1,1,1]=>28
[3,2,2,2]=>25
[3,2,2,1,1]=>30
[3,2,1,1,1,1]=>29
[3,1,1,1,1,1,1]=>22
[2,2,2,2,1]=>20
[2,2,2,1,1,1]=>22
[2,2,1,1,1,1,1]=>21
[2,1,1,1,1,1,1,1]=>17
[1,1,1,1,1,1,1,1,1]=>10
[10]=>11
[9,1]=>19
[8,2]=>24
[8,1,1]=>25
[7,3]=>26
[7,2,1]=>34
[7,1,1,1]=>29
[6,4]=>25
[6,3,1]=>37
[6,2,2]=>34
[6,2,1,1]=>40
[6,1,1,1,1]=>31
[5,5]=>21
[5,4,1]=>34
[5,3,2]=>37
[5,3,1,1]=>42
[5,2,2,1]=>41
[5,2,1,1,1]=>42
[5,1,1,1,1,1]=>31
[4,4,2]=>31
[4,4,1,1]=>35
[4,3,3]=>30
[4,3,2,1]=>42
[4,3,1,1,1]=>41
[4,2,2,2]=>35
[4,2,2,1,1]=>42
[4,2,1,1,1,1]=>40
[4,1,1,1,1,1,1]=>29
[3,3,3,1]=>30
[3,3,2,2]=>31
[3,3,2,1,1]=>37
[3,3,1,1,1,1]=>34
[3,2,2,2,1]=>34
[3,2,2,1,1,1]=>37
[3,2,1,1,1,1,1]=>34
[3,1,1,1,1,1,1,1]=>25
[2,2,2,2,2]=>21
[2,2,2,2,1,1]=>25
[2,2,2,1,1,1,1]=>26
[2,2,1,1,1,1,1,1]=>24
[2,1,1,1,1,1,1,1,1]=>19
[1,1,1,1,1,1,1,1,1,1]=>11
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of partitions contained in the given partition.
Code
def statistic(L): return sum( 1 for n in range(L.size()) for P in Partitions(n) if L.contains(P) ) + 1
Created
Jun 15, 2013 at 13:18 by Christian Stump
Updated
Oct 29, 2017 at 16:05 by Martin Rubey
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!