edit this statistic or download as text // json
Identifier
Values
=>
Cc0002;cc-rep
[]=>1 [1]=>2 [2]=>3 [1,1]=>3 [3]=>4 [2,1]=>5 [1,1,1]=>4 [4]=>5 [3,1]=>7 [2,2]=>6 [2,1,1]=>7 [1,1,1,1]=>5 [5]=>6 [4,1]=>9 [3,2]=>9 [3,1,1]=>10 [2,2,1]=>9 [2,1,1,1]=>9 [1,1,1,1,1]=>6 [6]=>7 [5,1]=>11 [4,2]=>12 [4,1,1]=>13 [3,3]=>10 [3,2,1]=>14 [3,1,1,1]=>13 [2,2,2]=>10 [2,2,1,1]=>12 [2,1,1,1,1]=>11 [1,1,1,1,1,1]=>7 [7]=>8 [6,1]=>13 [5,2]=>15 [5,1,1]=>16 [4,3]=>14 [4,2,1]=>19 [4,1,1,1]=>17 [3,3,1]=>16 [3,2,2]=>16 [3,2,1,1]=>19 [3,1,1,1,1]=>16 [2,2,2,1]=>14 [2,2,1,1,1]=>15 [2,1,1,1,1,1]=>13 [1,1,1,1,1,1,1]=>8 [8]=>9 [7,1]=>15 [6,2]=>18 [6,1,1]=>19 [5,3]=>18 [5,2,1]=>24 [5,1,1,1]=>21 [4,4]=>15 [4,3,1]=>23 [4,2,2]=>22 [4,2,1,1]=>26 [4,1,1,1,1]=>21 [3,3,2]=>19 [3,3,1,1]=>22 [3,2,2,1]=>23 [3,2,1,1,1]=>24 [3,1,1,1,1,1]=>19 [2,2,2,2]=>15 [2,2,2,1,1]=>18 [2,2,1,1,1,1]=>18 [2,1,1,1,1,1,1]=>15 [1,1,1,1,1,1,1,1]=>9 [9]=>10 [8,1]=>17 [7,2]=>21 [7,1,1]=>22 [6,3]=>22 [6,2,1]=>29 [6,1,1,1]=>25 [5,4]=>20 [5,3,1]=>30 [5,2,2]=>28 [5,2,1,1]=>33 [5,1,1,1,1]=>26 [4,4,1]=>25 [4,3,2]=>28 [4,3,1,1]=>32 [4,2,2,1]=>32 [4,2,1,1,1]=>33 [4,1,1,1,1,1]=>25 [3,3,3]=>20 [3,3,2,1]=>28 [3,3,1,1,1]=>28 [3,2,2,2]=>25 [3,2,2,1,1]=>30 [3,2,1,1,1,1]=>29 [3,1,1,1,1,1,1]=>22 [2,2,2,2,1]=>20 [2,2,2,1,1,1]=>22 [2,2,1,1,1,1,1]=>21 [2,1,1,1,1,1,1,1]=>17 [1,1,1,1,1,1,1,1,1]=>10 [10]=>11 [9,1]=>19 [8,2]=>24 [8,1,1]=>25 [7,3]=>26 [7,2,1]=>34 [7,1,1,1]=>29 [6,4]=>25 [6,3,1]=>37 [6,2,2]=>34 [6,2,1,1]=>40 [6,1,1,1,1]=>31 [5,5]=>21 [5,4,1]=>34 [5,3,2]=>37 [5,3,1,1]=>42 [5,2,2,1]=>41 [5,2,1,1,1]=>42 [5,1,1,1,1,1]=>31 [4,4,2]=>31 [4,4,1,1]=>35 [4,3,3]=>30 [4,3,2,1]=>42 [4,3,1,1,1]=>41 [4,2,2,2]=>35 [4,2,2,1,1]=>42 [4,2,1,1,1,1]=>40 [4,1,1,1,1,1,1]=>29 [3,3,3,1]=>30 [3,3,2,2]=>31 [3,3,2,1,1]=>37 [3,3,1,1,1,1]=>34 [3,2,2,2,1]=>34 [3,2,2,1,1,1]=>37 [3,2,1,1,1,1,1]=>34 [3,1,1,1,1,1,1,1]=>25 [2,2,2,2,2]=>21 [2,2,2,2,1,1]=>25 [2,2,2,1,1,1,1]=>26 [2,2,1,1,1,1,1,1]=>24 [2,1,1,1,1,1,1,1,1]=>19 [1,1,1,1,1,1,1,1,1,1]=>11
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The number of partitions contained in the given partition.
Code
def statistic(L):
    return sum( 1 for n in range(L.size()) for P in Partitions(n) if L.contains(P) ) + 1
Created
Jun 15, 2013 at 13:18 by Christian Stump
Updated
Oct 29, 2017 at 16:05 by Martin Rubey