Identifier
- St000112: Semistandard tableaux ⟶ ℤ
Values
=>
Cc0019;cc-rep
[[1]]=>0
[[2]]=>1
[[1,1]]=>0
[[1,2]]=>1
[[2,2]]=>2
[[1],[2]]=>0
[[1,3]]=>2
[[2,3]]=>3
[[3,3]]=>4
[[1],[3]]=>1
[[2],[3]]=>2
[[1,4]]=>3
[[2,4]]=>4
[[3,4]]=>5
[[4,4]]=>6
[[1],[4]]=>2
[[2],[4]]=>3
[[3],[4]]=>4
[[1,5]]=>4
[[2,5]]=>5
[[3,5]]=>6
[[4,5]]=>7
[[5,5]]=>8
[[1],[5]]=>3
[[2],[5]]=>4
[[3],[5]]=>5
[[4],[5]]=>6
[[1,6]]=>5
[[2,6]]=>6
[[3,6]]=>7
[[4,6]]=>8
[[5,6]]=>9
[[6,6]]=>10
[[1],[6]]=>4
[[2],[6]]=>5
[[3],[6]]=>6
[[4],[6]]=>7
[[5],[6]]=>8
[[1,1,1]]=>0
[[1,1,2]]=>1
[[1,2,2]]=>2
[[2,2,2]]=>3
[[1,1],[2]]=>0
[[1,2],[2]]=>1
[[1,1,3]]=>2
[[1,2,3]]=>3
[[1,3,3]]=>4
[[2,2,3]]=>4
[[2,3,3]]=>5
[[3,3,3]]=>6
[[1,1],[3]]=>1
[[1,2],[3]]=>2
[[1,3],[2]]=>2
[[1,3],[3]]=>3
[[2,2],[3]]=>3
[[2,3],[3]]=>4
[[1],[2],[3]]=>0
[[1,1,4]]=>3
[[1,2,4]]=>4
[[1,3,4]]=>5
[[1,4,4]]=>6
[[2,2,4]]=>5
[[2,3,4]]=>6
[[2,4,4]]=>7
[[3,3,4]]=>7
[[3,4,4]]=>8
[[4,4,4]]=>9
[[1,1],[4]]=>2
[[1,2],[4]]=>3
[[1,4],[2]]=>3
[[1,3],[4]]=>4
[[1,4],[3]]=>4
[[1,4],[4]]=>5
[[2,2],[4]]=>4
[[2,3],[4]]=>5
[[2,4],[3]]=>5
[[2,4],[4]]=>6
[[3,3],[4]]=>6
[[3,4],[4]]=>7
[[1],[2],[4]]=>1
[[1],[3],[4]]=>2
[[2],[3],[4]]=>3
[[1,1,5]]=>4
[[1,2,5]]=>5
[[1,3,5]]=>6
[[1,4,5]]=>7
[[1,5,5]]=>8
[[2,2,5]]=>6
[[2,3,5]]=>7
[[2,4,5]]=>8
[[2,5,5]]=>9
[[3,3,5]]=>8
[[3,4,5]]=>9
[[3,5,5]]=>10
[[4,4,5]]=>10
[[4,5,5]]=>11
[[5,5,5]]=>12
[[1,1],[5]]=>3
[[1,2],[5]]=>4
[[1,5],[2]]=>4
[[1,3],[5]]=>5
[[1,5],[3]]=>5
[[1,4],[5]]=>6
[[1,5],[4]]=>6
[[1,5],[5]]=>7
[[2,2],[5]]=>5
[[2,3],[5]]=>6
[[2,5],[3]]=>6
[[2,4],[5]]=>7
[[2,5],[4]]=>7
[[2,5],[5]]=>8
[[3,3],[5]]=>7
[[3,4],[5]]=>8
[[3,5],[4]]=>8
[[3,5],[5]]=>9
[[4,4],[5]]=>9
[[4,5],[5]]=>10
[[1],[2],[5]]=>2
[[1],[3],[5]]=>3
[[1],[4],[5]]=>4
[[2],[3],[5]]=>4
[[2],[4],[5]]=>5
[[3],[4],[5]]=>6
[[1,1,1,1]]=>0
[[1,1,1,2]]=>1
[[1,1,2,2]]=>2
[[1,2,2,2]]=>3
[[2,2,2,2]]=>4
[[1,1,1],[2]]=>0
[[1,1,2],[2]]=>1
[[1,2,2],[2]]=>2
[[1,1],[2,2]]=>0
[[1,1,1,3]]=>2
[[1,1,2,3]]=>3
[[1,1,3,3]]=>4
[[1,2,2,3]]=>4
[[1,2,3,3]]=>5
[[1,3,3,3]]=>6
[[2,2,2,3]]=>5
[[2,2,3,3]]=>6
[[2,3,3,3]]=>7
[[3,3,3,3]]=>8
[[1,1,1],[3]]=>1
[[1,1,2],[3]]=>2
[[1,1,3],[2]]=>2
[[1,1,3],[3]]=>3
[[1,2,2],[3]]=>3
[[1,2,3],[2]]=>3
[[1,2,3],[3]]=>4
[[1,3,3],[2]]=>4
[[1,3,3],[3]]=>5
[[2,2,2],[3]]=>4
[[2,2,3],[3]]=>5
[[2,3,3],[3]]=>6
[[1,1],[2,3]]=>1
[[1,1],[3,3]]=>2
[[1,2],[2,3]]=>2
[[1,2],[3,3]]=>3
[[2,2],[3,3]]=>4
[[1,1],[2],[3]]=>0
[[1,2],[2],[3]]=>1
[[1,3],[2],[3]]=>2
[[1,1,1,4]]=>3
[[1,1,2,4]]=>4
[[1,1,3,4]]=>5
[[1,1,4,4]]=>6
[[1,2,2,4]]=>5
[[1,2,3,4]]=>6
[[1,2,4,4]]=>7
[[1,3,3,4]]=>7
[[1,3,4,4]]=>8
[[1,4,4,4]]=>9
[[2,2,2,4]]=>6
[[2,2,3,4]]=>7
[[2,2,4,4]]=>8
[[2,3,3,4]]=>8
[[2,3,4,4]]=>9
[[2,4,4,4]]=>10
[[3,3,3,4]]=>9
[[3,3,4,4]]=>10
[[3,4,4,4]]=>11
[[4,4,4,4]]=>12
[[1,1,1],[4]]=>2
[[1,1,2],[4]]=>3
[[1,1,4],[2]]=>3
[[1,1,3],[4]]=>4
[[1,1,4],[3]]=>4
[[1,1,4],[4]]=>5
[[1,2,2],[4]]=>4
[[1,2,4],[2]]=>4
[[1,2,3],[4]]=>5
[[1,2,4],[3]]=>5
[[1,3,4],[2]]=>5
[[1,2,4],[4]]=>6
[[1,4,4],[2]]=>6
[[1,3,3],[4]]=>6
[[1,3,4],[3]]=>6
[[1,3,4],[4]]=>7
[[1,4,4],[3]]=>7
[[1,4,4],[4]]=>8
[[2,2,2],[4]]=>5
[[2,2,3],[4]]=>6
[[2,2,4],[3]]=>6
[[2,2,4],[4]]=>7
[[2,3,3],[4]]=>7
[[2,3,4],[3]]=>7
[[2,3,4],[4]]=>8
[[2,4,4],[3]]=>8
[[2,4,4],[4]]=>9
[[3,3,3],[4]]=>8
[[3,3,4],[4]]=>9
[[3,4,4],[4]]=>10
[[1,1],[2,4]]=>2
[[1,1],[3,4]]=>3
[[1,1],[4,4]]=>4
[[1,2],[2,4]]=>3
[[1,2],[3,4]]=>4
[[1,3],[2,4]]=>4
[[1,2],[4,4]]=>5
[[1,3],[3,4]]=>5
[[1,3],[4,4]]=>6
[[2,2],[3,4]]=>5
[[2,2],[4,4]]=>6
[[2,3],[3,4]]=>6
[[2,3],[4,4]]=>7
[[3,3],[4,4]]=>8
[[1,1],[2],[4]]=>1
[[1,1],[3],[4]]=>2
[[1,2],[2],[4]]=>2
[[1,2],[3],[4]]=>3
[[1,3],[2],[4]]=>3
[[1,4],[2],[3]]=>3
[[1,4],[2],[4]]=>4
[[1,3],[3],[4]]=>4
[[1,4],[3],[4]]=>5
[[2,2],[3],[4]]=>4
[[2,3],[3],[4]]=>5
[[2,4],[3],[4]]=>6
[[1],[2],[3],[4]]=>0
[[1,1,1,1,2]]=>1
[[1,1,1,2,2]]=>2
[[1,1,2,2,2]]=>3
[[1,2,2,2,2]]=>4
[[2,2,2,2,2]]=>5
[[1,1,1,1],[2]]=>0
[[1,1,1,2],[2]]=>1
[[1,1,2,2],[2]]=>2
[[1,2,2,2],[2]]=>3
[[1,1,1],[2,2]]=>0
[[1,1,2],[2,2]]=>1
[[1,1,1,1,3]]=>2
[[1,1,1,2,3]]=>3
[[1,1,1,3,3]]=>4
[[1,1,2,2,3]]=>4
[[1,1,2,3,3]]=>5
[[1,1,3,3,3]]=>6
[[1,2,2,2,3]]=>5
[[1,2,2,3,3]]=>6
[[1,2,3,3,3]]=>7
[[1,3,3,3,3]]=>8
[[2,2,2,2,3]]=>6
[[2,2,2,3,3]]=>7
[[2,2,3,3,3]]=>8
[[2,3,3,3,3]]=>9
[[3,3,3,3,3]]=>10
[[1,1,1,1],[3]]=>1
[[1,1,1,2],[3]]=>2
[[1,1,1,3],[2]]=>2
[[1,1,1,3],[3]]=>3
[[1,1,2,2],[3]]=>3
[[1,1,2,3],[2]]=>3
[[1,1,2,3],[3]]=>4
[[1,1,3,3],[2]]=>4
[[1,1,3,3],[3]]=>5
[[1,2,2,2],[3]]=>4
[[1,2,2,3],[2]]=>4
[[1,2,2,3],[3]]=>5
[[1,2,3,3],[2]]=>5
[[1,2,3,3],[3]]=>6
[[1,3,3,3],[2]]=>6
[[1,3,3,3],[3]]=>7
[[2,2,2,2],[3]]=>5
[[2,2,2,3],[3]]=>6
[[2,2,3,3],[3]]=>7
[[2,3,3,3],[3]]=>8
[[1,1,1],[2,3]]=>1
[[1,1,1],[3,3]]=>2
[[1,1,2],[2,3]]=>2
[[1,1,3],[2,2]]=>2
[[1,1,2],[3,3]]=>3
[[1,1,3],[2,3]]=>3
[[1,1,3],[3,3]]=>4
[[1,2,2],[2,3]]=>3
[[1,2,2],[3,3]]=>4
[[1,2,3],[2,3]]=>4
[[1,2,3],[3,3]]=>5
[[2,2,2],[3,3]]=>5
[[2,2,3],[3,3]]=>6
[[1,1,1],[2],[3]]=>0
[[1,1,2],[2],[3]]=>1
[[1,1,3],[2],[3]]=>2
[[1,2,2],[2],[3]]=>2
[[1,2,3],[2],[3]]=>3
[[1,3,3],[2],[3]]=>4
[[1,1],[2,2],[3]]=>0
[[1,1],[2,3],[3]]=>1
[[1,2],[2,3],[3]]=>2
[[1,1,1,1,1,2]]=>1
[[1,1,1,1,2,2]]=>2
[[1,1,1,2,2,2]]=>3
[[1,1,2,2,2,2]]=>4
[[1,2,2,2,2,2]]=>5
[[2,2,2,2,2,2]]=>6
[[1,1,1,1,1],[2]]=>0
[[1,1,1,1,2],[2]]=>1
[[1,1,1,2,2],[2]]=>2
[[1,1,2,2,2],[2]]=>3
[[1,2,2,2,2],[2]]=>4
[[1,1,1,1],[2,2]]=>0
[[1,1,1,2],[2,2]]=>1
[[1,1,2,2],[2,2]]=>2
[[1,1,1],[2,2,2]]=>0
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The sum of the entries reduced by the index of their row in a semistandard tableau.
This is also the depth of a semistandard tableau $T$ in the crystal $B(\lambda)$ where $\lambda$ is the shape of $T$, independent of the Cartan rank.
This is also the depth of a semistandard tableau $T$ in the crystal $B(\lambda)$ where $\lambda$ is the shape of $T$, independent of the Cartan rank.
Code
def statistic(T): return sum(e-i for i, row in enumerate(T, 1) for e in row) def statistic(T): la = T.shape() n = max(T.entries())-1 C = crystals.Tableaux(CartanType(["A", n]), shape=la) w = C(rows=T) return len(w.to_highest_weight()[1])
Created
Jun 15, 2013 at 15:48 by Travis Scrimshaw
Updated
Feb 21, 2021 at 14:57 by Martin Rubey
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!