edit this statistic or download as text // json
Identifier
Values
=>
[1]=>1 [1,1]=>1 [1,2]=>2 [2,1]=>2 [1,1,1]=>1 [1,1,2]=>1 [1,2,1]=>2 [2,1,1]=>2 [1,1,3]=>2 [1,3,1]=>2 [3,1,1]=>2 [1,2,2]=>2 [2,1,2]=>2 [2,2,1]=>2 [1,2,3]=>3 [1,3,2]=>3 [2,1,3]=>3 [2,3,1]=>3 [3,1,2]=>3 [3,2,1]=>3 [1,1,1,1]=>1 [1,1,1,2]=>1 [1,1,2,1]=>1 [1,2,1,1]=>2 [2,1,1,1]=>2 [1,1,1,3]=>1 [1,1,3,1]=>2 [1,3,1,1]=>2 [3,1,1,1]=>2 [1,1,1,4]=>2 [1,1,4,1]=>2 [1,4,1,1]=>2 [4,1,1,1]=>2 [1,1,2,2]=>1 [1,2,1,2]=>2 [1,2,2,1]=>2 [2,1,1,2]=>2 [2,1,2,1]=>2 [2,2,1,1]=>2 [1,1,2,3]=>1 [1,1,3,2]=>2 [1,2,1,3]=>2 [1,2,3,1]=>3 [1,3,1,2]=>2 [1,3,2,1]=>3 [2,1,1,3]=>2 [2,1,3,1]=>3 [2,3,1,1]=>3 [3,1,1,2]=>2 [3,1,2,1]=>3 [3,2,1,1]=>3 [1,1,2,4]=>2 [1,1,4,2]=>2 [1,2,1,4]=>3 [1,2,4,1]=>3 [1,4,1,2]=>2 [1,4,2,1]=>3 [2,1,1,4]=>3 [2,1,4,1]=>3 [2,4,1,1]=>3 [4,1,1,2]=>2 [4,1,2,1]=>3 [4,2,1,1]=>3 [1,1,3,3]=>2 [1,3,1,3]=>2 [1,3,3,1]=>2 [3,1,1,3]=>2 [3,1,3,1]=>2 [3,3,1,1]=>2 [1,1,3,4]=>3 [1,1,4,3]=>3 [1,3,1,4]=>3 [1,3,4,1]=>3 [1,4,1,3]=>3 [1,4,3,1]=>3 [3,1,1,4]=>3 [3,1,4,1]=>3 [3,4,1,1]=>3 [4,1,1,3]=>3 [4,1,3,1]=>3 [4,3,1,1]=>3 [1,2,2,2]=>2 [2,1,2,2]=>2 [2,2,1,2]=>2 [2,2,2,1]=>2 [1,2,2,3]=>2 [1,2,3,2]=>3 [1,3,2,2]=>3 [2,1,2,3]=>2 [2,1,3,2]=>3 [2,2,1,3]=>2 [2,2,3,1]=>2 [2,3,1,2]=>3 [2,3,2,1]=>3 [3,1,2,2]=>3 [3,2,1,2]=>3 [3,2,2,1]=>3 [1,2,2,4]=>3 [1,2,4,2]=>3 [1,4,2,2]=>3 [2,1,2,4]=>3 [2,1,4,2]=>3 [2,2,1,4]=>3 [2,2,4,1]=>3 [2,4,1,2]=>3 [2,4,2,1]=>3 [4,1,2,2]=>3 [4,2,1,2]=>3 [4,2,2,1]=>3 [1,2,3,3]=>3 [1,3,2,3]=>3 [1,3,3,2]=>3 [2,1,3,3]=>3 [2,3,1,3]=>3 [2,3,3,1]=>3 [3,1,2,3]=>3 [3,1,3,2]=>3 [3,2,1,3]=>3 [3,2,3,1]=>3 [3,3,1,2]=>3 [3,3,2,1]=>3 [1,2,3,4]=>4 [1,2,4,3]=>4 [1,3,2,4]=>4 [1,3,4,2]=>4 [1,4,2,3]=>4 [1,4,3,2]=>4 [2,1,3,4]=>4 [2,1,4,3]=>4 [2,3,1,4]=>4 [2,3,4,1]=>4 [2,4,1,3]=>4 [2,4,3,1]=>4 [3,1,2,4]=>4 [3,1,4,2]=>4 [3,2,1,4]=>4 [3,2,4,1]=>4 [3,4,1,2]=>4 [3,4,2,1]=>4 [4,1,2,3]=>4 [4,1,3,2]=>4 [4,2,1,3]=>4 [4,2,3,1]=>4 [4,3,1,2]=>4 [4,3,2,1]=>4
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The number of lucky cars of the parking function.
A lucky car is a car that was able to park in its prefered spot.
The generating function,
$$ q\prod_{i=1}^{n-1} (i + (n-i+1)q) $$
was established in [1].
References
[1] Gessel, I. M., Seo, S. A refinement of Cayley's formula for trees MathSciNet:2224940
Code
def statistic(pf):
    return len(pf.lucky_cars())

def generating_function(n):
    R. = ZZ[]
    if n:
        return q * prod(i + q*(n-i+1) for i in range(1, n))
    return R.one()

Created
Jun 20, 2013 at 11:13 by Viviane Pons
Updated
Oct 11, 2024 at 10:55 by Martin Rubey