edit this statistic or download as text // json
Identifier
Values
=>
Cc0022;cc-rep
['A',1]=>1 ['A',2]=>2 ['B',2]=>3 ['G',2]=>5 ['A',3]=>5 ['B',3]=>10 ['C',3]=>10 ['A',4]=>14 ['B',4]=>35 ['C',4]=>35 ['D',4]=>20 ['F',4]=>66 ['A',5]=>42 ['B',5]=>126 ['C',5]=>126 ['D',5]=>77 ['A',6]=>132 ['B',6]=>462 ['C',6]=>462 ['D',6]=>294 ['E',6]=>418 ['A',7]=>429 ['B',7]=>1716 ['C',7]=>1716 ['D',7]=>1122 ['E',7]=>2431 ['A',8]=>1430 ['B',8]=>6435 ['C',8]=>6435 ['D',8]=>4290 ['E',8]=>17342 ['A',9]=>4862 ['B',9]=>24310 ['C',9]=>24310 ['D',9]=>16445 ['A',10]=>16796 ['B',10]=>92378 ['C',10]=>92378 ['D',10]=>63206
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The positive Catalan number of an irreducible finite Cartan type.
The positive Catalan number of an irreducible finite Cartan type is defined as the product
$$ Cat^+(W) = \prod_{i=1}^n \frac{d_i-2+h}{d_i} = \prod_{i=1}^n \frac{d^*_i+h}{d_i}$$
where
  • $W$ is the Weyl group of the given Cartan type,
  • $n$ is the rank of $W$,
  • $d_1 \leq d_2 \leq \ldots \leq d_n$ are the degrees of the fundamental invariants of $W$,
  • $d^*_1 \geq d^*_2 \geq \ldots \geq d^*_n$ are the codegrees for $W$, see [2], and
  • $h = d_n$ is the corresponding Coxeter number.
The positive Catalan number $Cat^+(W)$ counts various combinatorial objects, among which are
  • noncrossing partitions of full Coxeter support inside $W$,
  • antichains not containing simple roots in the root poset,
  • bounded regions within the fundamental chamber in the Shi arrangement.
For a detailed treatment and further references, see [1].
References
[1] Armstrong, D. Generalized noncrossing partitions and combinatorics of Coxeter groups MathSciNet:2561274 arXiv:math/0611106
[2] wikipedia:Complex reflection group
Code
def statistic(ct):
    return ReflectionGroup(ct).catalan_number(positive=True)

Created
Jun 24, 2013 at 21:32 by Christian Stump
Updated
Oct 30, 2024 at 17:22 by Martin Rubey