Identifier
- St000144: Dyck paths ⟶ ℤ
Values
=>
Cc0005;cc-rep
[1,0]=>1
[1,0,1,0]=>2
[1,1,0,0]=>2
[1,0,1,0,1,0]=>3
[1,0,1,1,0,0]=>3
[1,1,0,0,1,0]=>3
[1,1,0,1,0,0]=>2
[1,1,1,0,0,0]=>3
[1,0,1,0,1,0,1,0]=>4
[1,0,1,0,1,1,0,0]=>4
[1,0,1,1,0,0,1,0]=>4
[1,0,1,1,0,1,0,0]=>3
[1,0,1,1,1,0,0,0]=>4
[1,1,0,0,1,0,1,0]=>4
[1,1,0,0,1,1,0,0]=>4
[1,1,0,1,0,0,1,0]=>3
[1,1,0,1,0,1,0,0]=>3
[1,1,0,1,1,0,0,0]=>3
[1,1,1,0,0,0,1,0]=>4
[1,1,1,0,0,1,0,0]=>3
[1,1,1,0,1,0,0,0]=>2
[1,1,1,1,0,0,0,0]=>4
[1,0,1,0,1,0,1,0,1,0]=>5
[1,0,1,0,1,0,1,1,0,0]=>5
[1,0,1,0,1,1,0,0,1,0]=>5
[1,0,1,0,1,1,0,1,0,0]=>4
[1,0,1,0,1,1,1,0,0,0]=>5
[1,0,1,1,0,0,1,0,1,0]=>5
[1,0,1,1,0,0,1,1,0,0]=>5
[1,0,1,1,0,1,0,0,1,0]=>4
[1,0,1,1,0,1,0,1,0,0]=>4
[1,0,1,1,0,1,1,0,0,0]=>4
[1,0,1,1,1,0,0,0,1,0]=>5
[1,0,1,1,1,0,0,1,0,0]=>4
[1,0,1,1,1,0,1,0,0,0]=>3
[1,0,1,1,1,1,0,0,0,0]=>5
[1,1,0,0,1,0,1,0,1,0]=>5
[1,1,0,0,1,0,1,1,0,0]=>5
[1,1,0,0,1,1,0,0,1,0]=>5
[1,1,0,0,1,1,0,1,0,0]=>4
[1,1,0,0,1,1,1,0,0,0]=>5
[1,1,0,1,0,0,1,0,1,0]=>4
[1,1,0,1,0,0,1,1,0,0]=>4
[1,1,0,1,0,1,0,0,1,0]=>4
[1,1,0,1,0,1,0,1,0,0]=>4
[1,1,0,1,0,1,1,0,0,0]=>4
[1,1,0,1,1,0,0,0,1,0]=>4
[1,1,0,1,1,0,0,1,0,0]=>4
[1,1,0,1,1,0,1,0,0,0]=>3
[1,1,0,1,1,1,0,0,0,0]=>4
[1,1,1,0,0,0,1,0,1,0]=>5
[1,1,1,0,0,0,1,1,0,0]=>5
[1,1,1,0,0,1,0,0,1,0]=>4
[1,1,1,0,0,1,0,1,0,0]=>4
[1,1,1,0,0,1,1,0,0,0]=>4
[1,1,1,0,1,0,0,0,1,0]=>3
[1,1,1,0,1,0,0,1,0,0]=>3
[1,1,1,0,1,0,1,0,0,0]=>3
[1,1,1,0,1,1,0,0,0,0]=>3
[1,1,1,1,0,0,0,0,1,0]=>5
[1,1,1,1,0,0,0,1,0,0]=>4
[1,1,1,1,0,0,1,0,0,0]=>3
[1,1,1,1,0,1,0,0,0,0]=>2
[1,1,1,1,1,0,0,0,0,0]=>5
[1,0,1,0,1,0,1,0,1,0,1,0]=>6
[1,0,1,0,1,0,1,0,1,1,0,0]=>6
[1,0,1,0,1,0,1,1,0,0,1,0]=>6
[1,0,1,0,1,0,1,1,0,1,0,0]=>5
[1,0,1,0,1,0,1,1,1,0,0,0]=>6
[1,0,1,0,1,1,0,0,1,0,1,0]=>6
[1,0,1,0,1,1,0,0,1,1,0,0]=>6
[1,0,1,0,1,1,0,1,0,0,1,0]=>5
[1,0,1,0,1,1,0,1,0,1,0,0]=>5
[1,0,1,0,1,1,0,1,1,0,0,0]=>5
[1,0,1,0,1,1,1,0,0,0,1,0]=>6
[1,0,1,0,1,1,1,0,0,1,0,0]=>5
[1,0,1,0,1,1,1,0,1,0,0,0]=>4
[1,0,1,0,1,1,1,1,0,0,0,0]=>6
[1,0,1,1,0,0,1,0,1,0,1,0]=>6
[1,0,1,1,0,0,1,0,1,1,0,0]=>6
[1,0,1,1,0,0,1,1,0,0,1,0]=>6
[1,0,1,1,0,0,1,1,0,1,0,0]=>5
[1,0,1,1,0,0,1,1,1,0,0,0]=>6
[1,0,1,1,0,1,0,0,1,0,1,0]=>5
[1,0,1,1,0,1,0,0,1,1,0,0]=>5
[1,0,1,1,0,1,0,1,0,0,1,0]=>5
[1,0,1,1,0,1,0,1,0,1,0,0]=>5
[1,0,1,1,0,1,0,1,1,0,0,0]=>5
[1,0,1,1,0,1,1,0,0,0,1,0]=>5
[1,0,1,1,0,1,1,0,0,1,0,0]=>5
[1,0,1,1,0,1,1,0,1,0,0,0]=>4
[1,0,1,1,0,1,1,1,0,0,0,0]=>5
[1,0,1,1,1,0,0,0,1,0,1,0]=>6
[1,0,1,1,1,0,0,0,1,1,0,0]=>6
[1,0,1,1,1,0,0,1,0,0,1,0]=>5
[1,0,1,1,1,0,0,1,0,1,0,0]=>5
[1,0,1,1,1,0,0,1,1,0,0,0]=>5
[1,0,1,1,1,0,1,0,0,0,1,0]=>4
[1,0,1,1,1,0,1,0,0,1,0,0]=>4
[1,0,1,1,1,0,1,0,1,0,0,0]=>4
[1,0,1,1,1,0,1,1,0,0,0,0]=>4
[1,0,1,1,1,1,0,0,0,0,1,0]=>6
[1,0,1,1,1,1,0,0,0,1,0,0]=>5
[1,0,1,1,1,1,0,0,1,0,0,0]=>4
[1,0,1,1,1,1,0,1,0,0,0,0]=>3
[1,0,1,1,1,1,1,0,0,0,0,0]=>6
[1,1,0,0,1,0,1,0,1,0,1,0]=>6
[1,1,0,0,1,0,1,0,1,1,0,0]=>6
[1,1,0,0,1,0,1,1,0,0,1,0]=>6
[1,1,0,0,1,0,1,1,0,1,0,0]=>5
[1,1,0,0,1,0,1,1,1,0,0,0]=>6
[1,1,0,0,1,1,0,0,1,0,1,0]=>6
[1,1,0,0,1,1,0,0,1,1,0,0]=>6
[1,1,0,0,1,1,0,1,0,0,1,0]=>5
[1,1,0,0,1,1,0,1,0,1,0,0]=>5
[1,1,0,0,1,1,0,1,1,0,0,0]=>5
[1,1,0,0,1,1,1,0,0,0,1,0]=>6
[1,1,0,0,1,1,1,0,0,1,0,0]=>5
[1,1,0,0,1,1,1,0,1,0,0,0]=>4
[1,1,0,0,1,1,1,1,0,0,0,0]=>6
[1,1,0,1,0,0,1,0,1,0,1,0]=>5
[1,1,0,1,0,0,1,0,1,1,0,0]=>5
[1,1,0,1,0,0,1,1,0,0,1,0]=>5
[1,1,0,1,0,0,1,1,0,1,0,0]=>4
[1,1,0,1,0,0,1,1,1,0,0,0]=>5
[1,1,0,1,0,1,0,0,1,0,1,0]=>5
[1,1,0,1,0,1,0,0,1,1,0,0]=>5
[1,1,0,1,0,1,0,1,0,0,1,0]=>5
[1,1,0,1,0,1,0,1,0,1,0,0]=>5
[1,1,0,1,0,1,0,1,1,0,0,0]=>5
[1,1,0,1,0,1,1,0,0,0,1,0]=>5
[1,1,0,1,0,1,1,0,0,1,0,0]=>5
[1,1,0,1,0,1,1,0,1,0,0,0]=>4
[1,1,0,1,0,1,1,1,0,0,0,0]=>5
[1,1,0,1,1,0,0,0,1,0,1,0]=>5
[1,1,0,1,1,0,0,0,1,1,0,0]=>5
[1,1,0,1,1,0,0,1,0,0,1,0]=>5
[1,1,0,1,1,0,0,1,0,1,0,0]=>5
[1,1,0,1,1,0,0,1,1,0,0,0]=>5
[1,1,0,1,1,0,1,0,0,0,1,0]=>4
[1,1,0,1,1,0,1,0,0,1,0,0]=>4
[1,1,0,1,1,0,1,0,1,0,0,0]=>4
[1,1,0,1,1,0,1,1,0,0,0,0]=>4
[1,1,0,1,1,1,0,0,0,0,1,0]=>5
[1,1,0,1,1,1,0,0,0,1,0,0]=>5
[1,1,0,1,1,1,0,0,1,0,0,0]=>4
[1,1,0,1,1,1,0,1,0,0,0,0]=>3
[1,1,0,1,1,1,1,0,0,0,0,0]=>5
[1,1,1,0,0,0,1,0,1,0,1,0]=>6
[1,1,1,0,0,0,1,0,1,1,0,0]=>6
[1,1,1,0,0,0,1,1,0,0,1,0]=>6
[1,1,1,0,0,0,1,1,0,1,0,0]=>5
[1,1,1,0,0,0,1,1,1,0,0,0]=>6
[1,1,1,0,0,1,0,0,1,0,1,0]=>5
[1,1,1,0,0,1,0,0,1,1,0,0]=>5
[1,1,1,0,0,1,0,1,0,0,1,0]=>5
[1,1,1,0,0,1,0,1,0,1,0,0]=>5
[1,1,1,0,0,1,0,1,1,0,0,0]=>5
[1,1,1,0,0,1,1,0,0,0,1,0]=>5
[1,1,1,0,0,1,1,0,0,1,0,0]=>5
[1,1,1,0,0,1,1,0,1,0,0,0]=>4
[1,1,1,0,0,1,1,1,0,0,0,0]=>5
[1,1,1,0,1,0,0,0,1,0,1,0]=>4
[1,1,1,0,1,0,0,0,1,1,0,0]=>4
[1,1,1,0,1,0,0,1,0,0,1,0]=>4
[1,1,1,0,1,0,0,1,0,1,0,0]=>4
[1,1,1,0,1,0,0,1,1,0,0,0]=>4
[1,1,1,0,1,0,1,0,0,0,1,0]=>4
[1,1,1,0,1,0,1,0,0,1,0,0]=>4
[1,1,1,0,1,0,1,0,1,0,0,0]=>4
[1,1,1,0,1,0,1,1,0,0,0,0]=>4
[1,1,1,0,1,1,0,0,0,0,1,0]=>4
[1,1,1,0,1,1,0,0,0,1,0,0]=>4
[1,1,1,0,1,1,0,0,1,0,0,0]=>4
[1,1,1,0,1,1,0,1,0,0,0,0]=>3
[1,1,1,0,1,1,1,0,0,0,0,0]=>4
[1,1,1,1,0,0,0,0,1,0,1,0]=>6
[1,1,1,1,0,0,0,0,1,1,0,0]=>6
[1,1,1,1,0,0,0,1,0,0,1,0]=>5
[1,1,1,1,0,0,0,1,0,1,0,0]=>5
[1,1,1,1,0,0,0,1,1,0,0,0]=>5
[1,1,1,1,0,0,1,0,0,0,1,0]=>4
[1,1,1,1,0,0,1,0,0,1,0,0]=>4
[1,1,1,1,0,0,1,0,1,0,0,0]=>4
[1,1,1,1,0,0,1,1,0,0,0,0]=>4
[1,1,1,1,0,1,0,0,0,0,1,0]=>3
[1,1,1,1,0,1,0,0,0,1,0,0]=>3
[1,1,1,1,0,1,0,0,1,0,0,0]=>3
[1,1,1,1,0,1,0,1,0,0,0,0]=>3
[1,1,1,1,0,1,1,0,0,0,0,0]=>3
[1,1,1,1,1,0,0,0,0,0,1,0]=>6
[1,1,1,1,1,0,0,0,0,1,0,0]=>5
[1,1,1,1,1,0,0,0,1,0,0,0]=>4
[1,1,1,1,1,0,0,1,0,0,0,0]=>3
[1,1,1,1,1,0,1,0,0,0,0,0]=>2
[1,1,1,1,1,1,0,0,0,0,0,0]=>6
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The pyramid weight of the Dyck path.
The pyramid weight of a Dyck path is the sum of the lengths of the maximal pyramids (maximal sequences of the form $1^h0^h$) in the path.
Maximal pyramids are called lower interactions by Le Borgne [2], see St000331The number of upper interactions of a Dyck path. and St000335The difference of lower and upper interactions. for related statistics.
The pyramid weight of a Dyck path is the sum of the lengths of the maximal pyramids (maximal sequences of the form $1^h0^h$) in the path.
Maximal pyramids are called lower interactions by Le Borgne [2], see St000331The number of upper interactions of a Dyck path. and St000335The difference of lower and upper interactions. for related statistics.
References
[1] Denise, A., Simion, R. Two combinatorial statistics on Dyck paths MathSciNet:1312450
[2] Le Borgne, Y. Counting upper interactions in Dyck paths MathSciNet:2196524
[2] Le Borgne, Y. Counting upper interactions in Dyck paths MathSciNet:2196524
Code
def statistic(x): return x.pyramid_weight()
Created
Jul 01, 2013 at 12:03 by Olivier Mallet
Updated
Apr 07, 2016 at 08:33 by Martin Rubey
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!