edit this statistic or download as text // json
Identifier
Values
=>
Cc0002;cc-rep
[]=>0 [1]=>-1 [2]=>1 [1,1]=>-2 [3]=>1 [2,1]=>0 [1,1,1]=>-3 [4]=>1 [3,1]=>0 [2,2]=>2 [2,1,1]=>-2 [1,1,1,1]=>-4 [5]=>1 [4,1]=>0 [3,2]=>2 [3,1,1]=>-1 [2,2,1]=>1 [2,1,1,1]=>-3 [1,1,1,1,1]=>-5 [6]=>1 [5,1]=>0 [4,2]=>2 [4,1,1]=>-1 [3,3]=>2 [3,2,1]=>1 [3,1,1,1]=>-3 [2,2,2]=>3 [2,2,1,1]=>-2 [2,1,1,1,1]=>-4 [1,1,1,1,1,1]=>-6 [7]=>1 [6,1]=>0 [5,2]=>2 [5,1,1]=>-1 [4,3]=>2 [4,2,1]=>1 [4,1,1,1]=>-2 [3,3,1]=>1 [3,2,2]=>3 [3,2,1,1]=>-1 [3,1,1,1,1]=>-4 [2,2,2,1]=>2 [2,2,1,1,1]=>-3 [2,1,1,1,1,1]=>-5 [1,1,1,1,1,1,1]=>-7 [8]=>1 [7,1]=>0 [6,2]=>2 [6,1,1]=>-1 [5,3]=>2 [5,2,1]=>1 [5,1,1,1]=>-2 [4,4]=>2 [4,3,1]=>1 [4,2,2]=>3 [4,2,1,1]=>-1 [4,1,1,1,1]=>-4 [3,3,2]=>3 [3,3,1,1]=>0 [3,2,2,1]=>2 [3,2,1,1,1]=>-3 [3,1,1,1,1,1]=>-5 [2,2,2,2]=>4 [2,2,2,1,1]=>-2 [2,2,1,1,1,1]=>-4 [2,1,1,1,1,1,1]=>-6 [1,1,1,1,1,1,1,1]=>-8 [9]=>1 [8,1]=>0 [7,2]=>2 [7,1,1]=>-1 [6,3]=>2 [6,2,1]=>1 [6,1,1,1]=>-2 [5,4]=>2 [5,3,1]=>1 [5,2,2]=>3 [5,2,1,1]=>-1 [5,1,1,1,1]=>-3 [4,4,1]=>1 [4,3,2]=>3 [4,3,1,1]=>0 [4,2,2,1]=>2 [4,2,1,1,1]=>-2 [4,1,1,1,1,1]=>-5 [3,3,3]=>3 [3,3,2,1]=>2 [3,3,1,1,1]=>-3 [3,2,2,2]=>4 [3,2,2,1,1]=>-1 [3,2,1,1,1,1]=>-4 [3,1,1,1,1,1,1]=>-6 [2,2,2,2,1]=>3 [2,2,2,1,1,1]=>-3 [2,2,1,1,1,1,1]=>-5 [2,1,1,1,1,1,1,1]=>-7 [1,1,1,1,1,1,1,1,1]=>-9 [10]=>1 [9,1]=>0 [8,2]=>2 [8,1,1]=>-1 [7,3]=>2 [7,2,1]=>1 [7,1,1,1]=>-2 [6,4]=>2 [6,3,1]=>1 [6,2,2]=>3 [6,2,1,1]=>-1 [6,1,1,1,1]=>-3 [5,5]=>2 [5,4,1]=>1 [5,3,2]=>3 [5,3,1,1]=>0 [5,2,2,1]=>2 [5,2,1,1,1]=>-2 [5,1,1,1,1,1]=>-5 [4,4,2]=>3 [4,4,1,1]=>0 [4,3,3]=>3 [4,3,2,1]=>2 [4,3,1,1,1]=>-2 [4,2,2,2]=>4 [4,2,2,1,1]=>-1 [4,2,1,1,1,1]=>-4 [4,1,1,1,1,1,1]=>-6 [3,3,3,1]=>2 [3,3,2,2]=>4 [3,3,2,1,1]=>0 [3,3,1,1,1,1]=>-4 [3,2,2,2,1]=>3 [3,2,2,1,1,1]=>-3 [3,2,1,1,1,1,1]=>-5 [3,1,1,1,1,1,1,1]=>-7 [2,2,2,2,2]=>5 [2,2,2,2,1,1]=>-2 [2,2,2,1,1,1,1]=>-4 [2,2,1,1,1,1,1,1]=>-6 [2,1,1,1,1,1,1,1,1]=>-8 [1,1,1,1,1,1,1,1,1,1]=>-10 [8,3]=>2 [7,4]=>2 [6,5]=>2 [6,4,1]=>1 [6,1,1,1,1,1]=>-4 [5,5,1]=>1 [5,4,2]=>3 [5,4,1,1]=>0 [5,3,3]=>3 [5,3,2,1]=>2 [5,3,1,1,1]=>-2 [5,2,2,2]=>4 [5,2,2,1,1]=>-1 [5,2,1,1,1,1]=>-3 [4,4,3]=>3 [4,4,2,1]=>2 [4,4,1,1,1]=>-1 [4,3,3,1]=>2 [4,3,2,2]=>4 [4,3,2,1,1]=>0 [4,2,2,2,1]=>3 [3,3,3,2]=>4 [3,3,3,1,1]=>1 [3,3,2,2,1]=>3 [3,2,2,2,2]=>5 [2,2,2,2,2,1]=>4 [7,5]=>2 [7,4,1]=>1 [6,6]=>2 [6,4,2]=>3 [5,5,2]=>3 [5,4,3]=>3 [5,4,2,1]=>2 [5,4,1,1,1]=>-1 [5,3,3,1]=>2 [5,3,2,2]=>4 [5,3,2,1,1]=>0 [5,2,2,2,1]=>3 [5,2,2,1,1,1]=>-2 [4,4,4]=>3 [4,4,3,1]=>2 [4,4,2,2]=>4 [4,4,2,1,1]=>0 [4,3,3,2]=>4 [4,3,3,1,1]=>1 [4,3,2,2,1]=>3 [3,3,3,3]=>4 [3,3,3,2,1]=>3 [3,3,2,2,2]=>5 [3,3,2,2,1,1]=>0 [3,2,2,2,2,1]=>4 [2,2,2,2,2,2]=>6 [8,5]=>2 [7,5,1]=>1 [7,4,2]=>3 [5,5,3]=>3 [5,4,4]=>3 [5,4,3,1]=>2 [5,4,2,2]=>4 [5,4,2,1,1]=>0 [5,4,1,1,1,1]=>-3 [5,3,3,2]=>4 [5,3,3,1,1]=>1 [5,3,2,2,1]=>3 [5,3,2,1,1,1]=>-2 [4,4,4,1]=>2 [4,4,3,2]=>4 [4,4,3,1,1]=>1 [4,4,2,2,1]=>3 [4,3,3,3]=>4 [4,3,3,2,1]=>3 [3,3,3,3,1]=>3 [3,3,3,2,2]=>5 [3,3,2,2,2,1]=>4 [9,5]=>2 [8,5,1]=>1 [7,5,2]=>3 [7,4,3]=>3 [6,4,4]=>3 [6,2,2,2,2]=>5 [5,5,4]=>3 [5,5,1,1,1,1]=>-2 [5,4,3,2]=>4 [5,4,3,1,1]=>1 [5,4,2,2,1]=>3 [5,4,2,1,1,1]=>-1 [5,3,3,2,1]=>3 [5,3,2,2,2]=>5 [5,2,2,2,2,1]=>4 [4,4,4,2]=>4 [4,4,3,3]=>4 [4,4,3,2,1]=>3 [4,3,2,2,2,1]=>4 [3,3,3,3,2]=>5 [3,3,3,3,1,1]=>2 [9,5,1]=>1 [8,5,2]=>3 [7,5,3]=>3 [6,5,4]=>3 [6,5,1,1,1,1]=>-2 [6,3,3,3]=>4 [6,2,2,2,2,1]=>4 [5,5,5]=>3 [5,4,3,2,1]=>3 [5,4,3,1,1,1]=>-1 [5,3,2,2,2,1]=>4 [4,4,4,3]=>4 [4,4,4,1,1,1]=>0 [3,3,3,3,3]=>5 [3,3,3,3,2,1]=>4 [8,5,3]=>3 [7,5,3,1]=>2 [5,5,3,3]=>4 [5,5,2,2,2]=>5 [5,4,3,2,1,1]=>1 [5,4,2,2,2,1]=>4 [4,4,4,4]=>4 [4,4,4,2,2]=>5 [4,3,3,3,2,1]=>4 [8,6,3]=>3 [6,5,3,3]=>4 [6,5,2,2,2]=>5 [6,4,4,3]=>4 [6,4,4,1,1,1]=>0 [6,3,3,3,2]=>5 [6,3,3,3,1,1]=>2 [5,5,4,3]=>4 [5,5,4,1,1,1]=>0 [5,5,2,2,2,1]=>4 [5,4,3,2,2,1]=>4 [5,3,3,3,2,1]=>4 [4,4,4,3,2]=>5 [4,4,4,3,1,1]=>2 [4,4,4,2,2,1]=>4 [4,4,4,3,2,1]=>4 [5,4,3,3,2,1]=>4 [6,3,3,3,2,1]=>4 [6,5,2,2,2,1]=>4 [5,5,3,3,1,1]=>2 [6,5,4,1,1,1]=>0 [5,5,3,3,2]=>5 [5,5,4,2,2]=>5 [6,4,4,2,2]=>5 [6,5,4,3]=>4 [9,6,3]=>3 [8,6,4]=>3 [5,4,4,3,2,1]=>4 [5,5,3,3,2,1]=>4 [5,5,4,2,2,1]=>4 [6,4,4,2,2,1]=>4 [5,5,4,3,1,1]=>2 [6,4,4,3,1,1]=>2 [6,5,3,3,1,1]=>2 [5,5,4,3,2]=>5 [6,4,4,3,2]=>5 [6,5,3,3,2]=>5 [6,5,4,2,2]=>5 [6,5,4,3,1]=>3 [6,5,4,1,1,1,1]=>-2 [9,6,4]=>3 [8,5,4,2]=>4 [8,5,5,1]=>2 [5,5,4,3,2,1]=>4 [6,4,4,3,2,1]=>4 [6,5,3,3,2,1]=>4 [6,5,4,2,2,1]=>4 [6,5,4,3,1,1]=>2 [6,5,4,3,2]=>5 [6,5,2,2,2,2,1]=>5 [6,5,4,2,1,1,1]=>0 [7,5,4,3,1]=>3 [8,6,4,2]=>4 [10,6,4]=>3 [10,7,3]=>3 [9,7,4]=>3 [9,5,5,1]=>2 [6,5,4,3,2,1]=>4 [6,3,3,3,3,2,1]=>5 [6,5,3,2,2,2,1]=>5 [6,5,4,3,1,1,1]=>0 [11,7,3]=>3 [4,4,4,4,3,2,1]=>5 [6,4,3,3,3,2,1]=>5 [6,5,4,2,2,2,1]=>5 [6,5,4,3,2,1,1]=>2 [9,6,4,3]=>4 [5,4,4,4,3,2,1]=>5 [6,5,3,3,3,2,1]=>5 [6,5,4,3,2,2,1]=>5 [9,6,5,3]=>4 [8,6,5,3,1]=>3 [6,4,4,4,3,2,1]=>5 [6,5,4,3,3,2,1]=>5 [11,7,5,1]=>2 [9,7,5,3]=>4 [5,5,5,4,3,2,1]=>5 [6,5,4,4,3,2,1]=>5 [9,7,5,3,1]=>3 [10,7,5,3]=>4 [6,5,5,4,3,2,1]=>5 [9,7,5,4,1]=>3 [6,6,5,4,3,2,1]=>5 [7,6,5,4,3,2]=>6 [7,6,5,4,3,2,1]=>5 [7,6,5,4,3,1,1,1]=>1 [10,7,6,4,1]=>3 [9,7,6,4,2]=>5 [10,8,5,4,1]=>3 [7,6,5,4,3,2,1,1]=>3 [7,6,5,4,2,2,2,1]=>6 [10,8,6,4,1]=>3 [9,7,5,5,3,1]=>4 [7,6,5,4,3,2,2,1]=>6 [7,6,5,3,3,3,2,1]=>6 [11,8,6,4,1]=>3 [10,8,6,4,2]=>5 [7,6,5,4,3,3,2,1]=>6 [7,6,4,4,4,3,2,1]=>6 [11,8,6,5,1]=>3 [7,6,5,4,4,3,2,1]=>6 [7,5,5,5,4,3,2,1]=>6 [7,6,5,5,4,3,2,1]=>6 [6,6,6,5,4,3,2,1]=>6 [7,6,6,5,4,3,2,1]=>6 [12,9,7,5,1]=>3 [7,7,6,5,4,3,2,1]=>6 [13,9,7,5,1]=>3 [11,9,7,5,3,1]=>4 [11,8,7,5,4,1]=>4 [8,7,6,5,4,3,2,1]=>6 [8,7,6,5,4,3,2,1,1]=>4 [8,7,6,5,4,3,2,2,1]=>7 [8,7,6,5,4,3,3,2,1]=>7 [8,7,6,5,4,4,3,2,1]=>7 [11,9,7,5,5,3]=>6 [8,7,6,5,5,4,3,2,1]=>7 [8,7,6,6,5,4,3,2,1]=>7 [8,7,7,6,5,4,3,2,1]=>7 [8,8,7,6,5,4,3,2,1]=>7 [9,8,7,6,5,4,3,2,1]=>7 [11,9,7,7,5,3,3]=>7
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The Andrews-Garvan crank of a partition.
If $\pi$ is a partition, let $l(\pi)$ be its length (number of parts), $\omega(\pi)$ be the number of parts equal to 1, and $\mu(\pi)$ be the number of parts larger than $\omega(\pi)$. The crank is then defined by
$$ c(\pi) = \begin{cases} l(\pi) &\text{if \(\omega(\pi)=0\)}\\ \mu(\pi) - \omega(\pi) &\text{otherwise}. \end{cases} $$
This statistic was defined in [1] to explain Ramanujan's partition congruence $$p(11n+6) \equiv 0 \pmod{11}$$ in the same way as the Dyson rank (St000145The Dyson rank of a partition.) explains the congruences $$p(5n+4) \equiv 0 \pmod{5}$$ and $$p(7n+5) \equiv 0 \pmod{7}.$$
References
[1] Andrews, G. E., Garvan, F. G. Dyson's crank of a partition MathSciNet:0929094
[2] wikipedia:Ramanujan's congruences
Code
def statistic(p):
    nb_ones = p.to_list().count(1)
    if nb_ones == 0:
        return len(p)
    else:
        return len([i for i in p if i > nb_ones]) - nb_ones
Created
Jul 05, 2013 at 14:36 by Olivier Mallet
Updated
Nov 29, 2021 at 10:47 by Martin Rubey