***************************************************************************** * www.FindStat.org - The Combinatorial Statistic Finder * * * * Copyright (C) 2019 The FindStatCrew * * * * This information is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. * ***************************************************************************** ----------------------------------------------------------------------------- Statistic identifier: St000157 ----------------------------------------------------------------------------- Collection: Standard tableaux ----------------------------------------------------------------------------- Description: The number of descents of a standard tableau. Entry $i$ of a standard Young tableau is a descent if $i+1$ appears in a row below the row of $i$. ----------------------------------------------------------------------------- References: [1] Adin, R. M., Roichman, Y. Descent functions and random Young tableaux [[MathSciNet:1841639]] [2] Hästö, P. A. On descents in standard Young tableaux [[MathSciNet:1798944]] ----------------------------------------------------------------------------- Code: def statistic(x): # alternatively # return len(x.standard_descents()) descents = [] for i in [2..x.size()]: if x.cells_containing(i)[0][0] > x.cells_containing(i-1)[0][0]: descents.append(i-1) return len(descents) ----------------------------------------------------------------------------- Statistic values: [] => 0 [[1]] => 0 [[1,2]] => 0 [[1],[2]] => 1 [[1,2,3]] => 0 [[1,3],[2]] => 1 [[1,2],[3]] => 1 [[1],[2],[3]] => 2 [[1,2,3,4]] => 0 [[1,3,4],[2]] => 1 [[1,2,4],[3]] => 1 [[1,2,3],[4]] => 1 [[1,3],[2,4]] => 2 [[1,2],[3,4]] => 1 [[1,4],[2],[3]] => 2 [[1,3],[2],[4]] => 2 [[1,2],[3],[4]] => 2 [[1],[2],[3],[4]] => 3 [[1,2,3,4,5]] => 0 [[1,3,4,5],[2]] => 1 [[1,2,4,5],[3]] => 1 [[1,2,3,5],[4]] => 1 [[1,2,3,4],[5]] => 1 [[1,3,5],[2,4]] => 2 [[1,2,5],[3,4]] => 1 [[1,3,4],[2,5]] => 2 [[1,2,4],[3,5]] => 2 [[1,2,3],[4,5]] => 1 [[1,4,5],[2],[3]] => 2 [[1,3,5],[2],[4]] => 2 [[1,2,5],[3],[4]] => 2 [[1,3,4],[2],[5]] => 2 [[1,2,4],[3],[5]] => 2 [[1,2,3],[4],[5]] => 2 [[1,4],[2,5],[3]] => 3 [[1,3],[2,5],[4]] => 2 [[1,2],[3,5],[4]] => 2 [[1,3],[2,4],[5]] => 3 [[1,2],[3,4],[5]] => 2 [[1,5],[2],[3],[4]] => 3 [[1,4],[2],[3],[5]] => 3 [[1,3],[2],[4],[5]] => 3 [[1,2],[3],[4],[5]] => 3 [[1],[2],[3],[4],[5]] => 4 [[1,2,3,4,5,6]] => 0 [[1,3,4,5,6],[2]] => 1 [[1,2,4,5,6],[3]] => 1 [[1,2,3,5,6],[4]] => 1 [[1,2,3,4,6],[5]] => 1 [[1,2,3,4,5],[6]] => 1 [[1,3,5,6],[2,4]] => 2 [[1,2,5,6],[3,4]] => 1 [[1,3,4,6],[2,5]] => 2 [[1,2,4,6],[3,5]] => 2 [[1,2,3,6],[4,5]] => 1 [[1,3,4,5],[2,6]] => 2 [[1,2,4,5],[3,6]] => 2 [[1,2,3,5],[4,6]] => 2 [[1,2,3,4],[5,6]] => 1 [[1,4,5,6],[2],[3]] => 2 [[1,3,5,6],[2],[4]] => 2 [[1,2,5,6],[3],[4]] => 2 [[1,3,4,6],[2],[5]] => 2 [[1,2,4,6],[3],[5]] => 2 [[1,2,3,6],[4],[5]] => 2 [[1,3,4,5],[2],[6]] => 2 [[1,2,4,5],[3],[6]] => 2 [[1,2,3,5],[4],[6]] => 2 [[1,2,3,4],[5],[6]] => 2 [[1,3,5],[2,4,6]] => 3 [[1,2,5],[3,4,6]] => 2 [[1,3,4],[2,5,6]] => 2 [[1,2,4],[3,5,6]] => 2 [[1,2,3],[4,5,6]] => 1 [[1,4,6],[2,5],[3]] => 3 [[1,3,6],[2,5],[4]] => 2 [[1,2,6],[3,5],[4]] => 2 [[1,3,6],[2,4],[5]] => 3 [[1,2,6],[3,4],[5]] => 2 [[1,4,5],[2,6],[3]] => 3 [[1,3,5],[2,6],[4]] => 3 [[1,2,5],[3,6],[4]] => 3 [[1,3,4],[2,6],[5]] => 2 [[1,2,4],[3,6],[5]] => 2 [[1,2,3],[4,6],[5]] => 2 [[1,3,5],[2,4],[6]] => 3 [[1,2,5],[3,4],[6]] => 2 [[1,3,4],[2,5],[6]] => 3 [[1,2,4],[3,5],[6]] => 3 [[1,2,3],[4,5],[6]] => 2 [[1,5,6],[2],[3],[4]] => 3 [[1,4,6],[2],[3],[5]] => 3 [[1,3,6],[2],[4],[5]] => 3 [[1,2,6],[3],[4],[5]] => 3 [[1,4,5],[2],[3],[6]] => 3 [[1,3,5],[2],[4],[6]] => 3 [[1,2,5],[3],[4],[6]] => 3 [[1,3,4],[2],[5],[6]] => 3 [[1,2,4],[3],[5],[6]] => 3 [[1,2,3],[4],[5],[6]] => 3 [[1,4],[2,5],[3,6]] => 4 [[1,3],[2,5],[4,6]] => 3 [[1,2],[3,5],[4,6]] => 3 [[1,3],[2,4],[5,6]] => 3 [[1,2],[3,4],[5,6]] => 2 [[1,5],[2,6],[3],[4]] => 4 [[1,4],[2,6],[3],[5]] => 3 [[1,3],[2,6],[4],[5]] => 3 [[1,2],[3,6],[4],[5]] => 3 [[1,4],[2,5],[3],[6]] => 4 [[1,3],[2,5],[4],[6]] => 3 [[1,2],[3,5],[4],[6]] => 3 [[1,3],[2,4],[5],[6]] => 4 [[1,2],[3,4],[5],[6]] => 3 [[1,6],[2],[3],[4],[5]] => 4 [[1,5],[2],[3],[4],[6]] => 4 [[1,4],[2],[3],[5],[6]] => 4 [[1,3],[2],[4],[5],[6]] => 4 [[1,2],[3],[4],[5],[6]] => 4 [[1],[2],[3],[4],[5],[6]] => 5 [[1,2,3,4,5,6,7]] => 0 [[1,3,4,5,6,7],[2]] => 1 [[1,2,4,5,6,7],[3]] => 1 [[1,2,3,5,6,7],[4]] => 1 [[1,2,3,4,6,7],[5]] => 1 [[1,2,3,4,5,7],[6]] => 1 [[1,2,3,4,5,6],[7]] => 1 [[1,3,5,6,7],[2,4]] => 2 [[1,2,5,6,7],[3,4]] => 1 [[1,3,4,6,7],[2,5]] => 2 [[1,2,4,6,7],[3,5]] => 2 [[1,2,3,6,7],[4,5]] => 1 [[1,3,4,5,7],[2,6]] => 2 [[1,2,4,5,7],[3,6]] => 2 [[1,2,3,5,7],[4,6]] => 2 [[1,2,3,4,7],[5,6]] => 1 [[1,3,4,5,6],[2,7]] => 2 [[1,2,4,5,6],[3,7]] => 2 [[1,2,3,5,6],[4,7]] => 2 [[1,2,3,4,6],[5,7]] => 2 [[1,2,3,4,5],[6,7]] => 1 [[1,4,5,6,7],[2],[3]] => 2 [[1,3,5,6,7],[2],[4]] => 2 [[1,2,5,6,7],[3],[4]] => 2 [[1,3,4,6,7],[2],[5]] => 2 [[1,2,4,6,7],[3],[5]] => 2 [[1,2,3,6,7],[4],[5]] => 2 [[1,3,4,5,7],[2],[6]] => 2 [[1,2,4,5,7],[3],[6]] => 2 [[1,2,3,5,7],[4],[6]] => 2 [[1,2,3,4,7],[5],[6]] => 2 [[1,3,4,5,6],[2],[7]] => 2 [[1,2,4,5,6],[3],[7]] => 2 [[1,2,3,5,6],[4],[7]] => 2 [[1,2,3,4,6],[5],[7]] => 2 [[1,2,3,4,5],[6],[7]] => 2 [[1,3,5,7],[2,4,6]] => 3 [[1,2,5,7],[3,4,6]] => 2 [[1,3,4,7],[2,5,6]] => 2 [[1,2,4,7],[3,5,6]] => 2 [[1,2,3,7],[4,5,6]] => 1 [[1,3,5,6],[2,4,7]] => 3 [[1,2,5,6],[3,4,7]] => 2 [[1,3,4,6],[2,5,7]] => 3 [[1,2,4,6],[3,5,7]] => 3 [[1,2,3,6],[4,5,7]] => 2 [[1,3,4,5],[2,6,7]] => 2 [[1,2,4,5],[3,6,7]] => 2 [[1,2,3,5],[4,6,7]] => 2 [[1,2,3,4],[5,6,7]] => 1 [[1,4,6,7],[2,5],[3]] => 3 [[1,3,6,7],[2,5],[4]] => 2 [[1,2,6,7],[3,5],[4]] => 2 [[1,3,6,7],[2,4],[5]] => 3 [[1,2,6,7],[3,4],[5]] => 2 [[1,4,5,7],[2,6],[3]] => 3 [[1,3,5,7],[2,6],[4]] => 3 [[1,2,5,7],[3,6],[4]] => 3 [[1,3,4,7],[2,6],[5]] => 2 [[1,2,4,7],[3,6],[5]] => 2 [[1,2,3,7],[4,6],[5]] => 2 [[1,3,5,7],[2,4],[6]] => 3 [[1,2,5,7],[3,4],[6]] => 2 [[1,3,4,7],[2,5],[6]] => 3 [[1,2,4,7],[3,5],[6]] => 3 [[1,2,3,7],[4,5],[6]] => 2 [[1,4,5,6],[2,7],[3]] => 3 [[1,3,5,6],[2,7],[4]] => 3 [[1,2,5,6],[3,7],[4]] => 3 [[1,3,4,6],[2,7],[5]] => 3 [[1,2,4,6],[3,7],[5]] => 3 [[1,2,3,6],[4,7],[5]] => 3 [[1,3,4,5],[2,7],[6]] => 2 [[1,2,4,5],[3,7],[6]] => 2 [[1,2,3,5],[4,7],[6]] => 2 [[1,2,3,4],[5,7],[6]] => 2 [[1,3,5,6],[2,4],[7]] => 3 [[1,2,5,6],[3,4],[7]] => 2 [[1,3,4,6],[2,5],[7]] => 3 [[1,2,4,6],[3,5],[7]] => 3 [[1,2,3,6],[4,5],[7]] => 2 [[1,3,4,5],[2,6],[7]] => 3 [[1,2,4,5],[3,6],[7]] => 3 [[1,2,3,5],[4,6],[7]] => 3 [[1,2,3,4],[5,6],[7]] => 2 [[1,5,6,7],[2],[3],[4]] => 3 [[1,4,6,7],[2],[3],[5]] => 3 [[1,3,6,7],[2],[4],[5]] => 3 [[1,2,6,7],[3],[4],[5]] => 3 [[1,4,5,7],[2],[3],[6]] => 3 [[1,3,5,7],[2],[4],[6]] => 3 [[1,2,5,7],[3],[4],[6]] => 3 [[1,3,4,7],[2],[5],[6]] => 3 [[1,2,4,7],[3],[5],[6]] => 3 [[1,2,3,7],[4],[5],[6]] => 3 [[1,4,5,6],[2],[3],[7]] => 3 [[1,3,5,6],[2],[4],[7]] => 3 [[1,2,5,6],[3],[4],[7]] => 3 [[1,3,4,6],[2],[5],[7]] => 3 [[1,2,4,6],[3],[5],[7]] => 3 [[1,2,3,6],[4],[5],[7]] => 3 [[1,3,4,5],[2],[6],[7]] => 3 [[1,2,4,5],[3],[6],[7]] => 3 [[1,2,3,5],[4],[6],[7]] => 3 [[1,2,3,4],[5],[6],[7]] => 3 [[1,4,6],[2,5,7],[3]] => 4 [[1,3,6],[2,5,7],[4]] => 3 [[1,2,6],[3,5,7],[4]] => 3 [[1,3,6],[2,4,7],[5]] => 4 [[1,2,6],[3,4,7],[5]] => 3 [[1,4,5],[2,6,7],[3]] => 3 [[1,3,5],[2,6,7],[4]] => 3 [[1,2,5],[3,6,7],[4]] => 3 [[1,3,4],[2,6,7],[5]] => 2 [[1,2,4],[3,6,7],[5]] => 2 [[1,2,3],[4,6,7],[5]] => 2 [[1,3,5],[2,4,7],[6]] => 3 [[1,2,5],[3,4,7],[6]] => 2 [[1,3,4],[2,5,7],[6]] => 3 [[1,2,4],[3,5,7],[6]] => 3 [[1,2,3],[4,5,7],[6]] => 2 [[1,3,5],[2,4,6],[7]] => 4 [[1,2,5],[3,4,6],[7]] => 3 [[1,3,4],[2,5,6],[7]] => 3 [[1,2,4],[3,5,6],[7]] => 3 [[1,2,3],[4,5,6],[7]] => 2 [[1,4,7],[2,5],[3,6]] => 4 [[1,3,7],[2,5],[4,6]] => 3 [[1,2,7],[3,5],[4,6]] => 3 [[1,3,7],[2,4],[5,6]] => 3 [[1,2,7],[3,4],[5,6]] => 2 [[1,4,6],[2,5],[3,7]] => 4 [[1,3,6],[2,5],[4,7]] => 3 [[1,2,6],[3,5],[4,7]] => 3 [[1,3,6],[2,4],[5,7]] => 4 [[1,2,6],[3,4],[5,7]] => 3 [[1,4,5],[2,6],[3,7]] => 4 [[1,3,5],[2,6],[4,7]] => 4 [[1,2,5],[3,6],[4,7]] => 4 [[1,3,4],[2,6],[5,7]] => 3 [[1,2,4],[3,6],[5,7]] => 3 [[1,2,3],[4,6],[5,7]] => 3 [[1,3,5],[2,4],[6,7]] => 3 [[1,2,5],[3,4],[6,7]] => 2 [[1,3,4],[2,5],[6,7]] => 3 [[1,2,4],[3,5],[6,7]] => 3 [[1,2,3],[4,5],[6,7]] => 2 [[1,5,7],[2,6],[3],[4]] => 4 [[1,4,7],[2,6],[3],[5]] => 3 [[1,3,7],[2,6],[4],[5]] => 3 [[1,2,7],[3,6],[4],[5]] => 3 [[1,4,7],[2,5],[3],[6]] => 4 [[1,3,7],[2,5],[4],[6]] => 3 [[1,2,7],[3,5],[4],[6]] => 3 [[1,3,7],[2,4],[5],[6]] => 4 [[1,2,7],[3,4],[5],[6]] => 3 [[1,5,6],[2,7],[3],[4]] => 4 [[1,4,6],[2,7],[3],[5]] => 4 [[1,3,6],[2,7],[4],[5]] => 4 [[1,2,6],[3,7],[4],[5]] => 4 [[1,4,5],[2,7],[3],[6]] => 3 [[1,3,5],[2,7],[4],[6]] => 3 [[1,2,5],[3,7],[4],[6]] => 3 [[1,3,4],[2,7],[5],[6]] => 3 [[1,2,4],[3,7],[5],[6]] => 3 [[1,2,3],[4,7],[5],[6]] => 3 [[1,4,6],[2,5],[3],[7]] => 4 [[1,3,6],[2,5],[4],[7]] => 3 [[1,2,6],[3,5],[4],[7]] => 3 [[1,3,6],[2,4],[5],[7]] => 4 [[1,2,6],[3,4],[5],[7]] => 3 [[1,4,5],[2,6],[3],[7]] => 4 [[1,3,5],[2,6],[4],[7]] => 4 [[1,2,5],[3,6],[4],[7]] => 4 [[1,3,4],[2,6],[5],[7]] => 3 [[1,2,4],[3,6],[5],[7]] => 3 [[1,2,3],[4,6],[5],[7]] => 3 [[1,3,5],[2,4],[6],[7]] => 4 [[1,2,5],[3,4],[6],[7]] => 3 [[1,3,4],[2,5],[6],[7]] => 4 [[1,2,4],[3,5],[6],[7]] => 4 [[1,2,3],[4,5],[6],[7]] => 3 [[1,6,7],[2],[3],[4],[5]] => 4 [[1,5,7],[2],[3],[4],[6]] => 4 [[1,4,7],[2],[3],[5],[6]] => 4 [[1,3,7],[2],[4],[5],[6]] => 4 [[1,2,7],[3],[4],[5],[6]] => 4 [[1,5,6],[2],[3],[4],[7]] => 4 [[1,4,6],[2],[3],[5],[7]] => 4 [[1,3,6],[2],[4],[5],[7]] => 4 [[1,2,6],[3],[4],[5],[7]] => 4 [[1,4,5],[2],[3],[6],[7]] => 4 [[1,3,5],[2],[4],[6],[7]] => 4 [[1,2,5],[3],[4],[6],[7]] => 4 [[1,3,4],[2],[5],[6],[7]] => 4 [[1,2,4],[3],[5],[6],[7]] => 4 [[1,2,3],[4],[5],[6],[7]] => 4 [[1,5],[2,6],[3,7],[4]] => 5 [[1,4],[2,6],[3,7],[5]] => 4 [[1,3],[2,6],[4,7],[5]] => 4 [[1,2],[3,6],[4,7],[5]] => 4 [[1,4],[2,5],[3,7],[6]] => 4 [[1,3],[2,5],[4,7],[6]] => 3 [[1,2],[3,5],[4,7],[6]] => 3 [[1,3],[2,4],[5,7],[6]] => 4 [[1,2],[3,4],[5,7],[6]] => 3 [[1,4],[2,5],[3,6],[7]] => 5 [[1,3],[2,5],[4,6],[7]] => 4 [[1,2],[3,5],[4,6],[7]] => 4 [[1,3],[2,4],[5,6],[7]] => 4 [[1,2],[3,4],[5,6],[7]] => 3 [[1,6],[2,7],[3],[4],[5]] => 5 [[1,5],[2,7],[3],[4],[6]] => 4 [[1,4],[2,7],[3],[5],[6]] => 4 [[1,3],[2,7],[4],[5],[6]] => 4 [[1,2],[3,7],[4],[5],[6]] => 4 [[1,5],[2,6],[3],[4],[7]] => 5 [[1,4],[2,6],[3],[5],[7]] => 4 [[1,3],[2,6],[4],[5],[7]] => 4 [[1,2],[3,6],[4],[5],[7]] => 4 [[1,4],[2,5],[3],[6],[7]] => 5 [[1,3],[2,5],[4],[6],[7]] => 4 [[1,2],[3,5],[4],[6],[7]] => 4 [[1,3],[2,4],[5],[6],[7]] => 5 [[1,2],[3,4],[5],[6],[7]] => 4 [[1,7],[2],[3],[4],[5],[6]] => 5 [[1,6],[2],[3],[4],[5],[7]] => 5 [[1,5],[2],[3],[4],[6],[7]] => 5 [[1,4],[2],[3],[5],[6],[7]] => 5 [[1,3],[2],[4],[5],[6],[7]] => 5 [[1,2],[3],[4],[5],[6],[7]] => 5 [[1],[2],[3],[4],[5],[6],[7]] => 6 [[1,2,3,4,5,6,7,8]] => 0 [[1,3,4,5,6,7,8],[2]] => 1 [[1,2,4,5,6,7,8],[3]] => 1 [[1,2,3,5,6,7,8],[4]] => 1 [[1,2,3,4,6,7,8],[5]] => 1 [[1,2,3,4,5,7,8],[6]] => 1 [[1,2,3,4,5,6,8],[7]] => 1 [[1,2,3,4,5,6,7],[8]] => 1 [[1,3,5,6,7,8],[2,4]] => 2 [[1,2,5,6,7,8],[3,4]] => 1 [[1,3,4,6,7,8],[2,5]] => 2 [[1,2,4,6,7,8],[3,5]] => 2 [[1,2,3,6,7,8],[4,5]] => 1 [[1,3,4,5,7,8],[2,6]] => 2 [[1,2,4,5,7,8],[3,6]] => 2 [[1,2,3,5,7,8],[4,6]] => 2 [[1,2,3,4,7,8],[5,6]] => 1 [[1,3,4,5,6,8],[2,7]] => 2 [[1,2,4,5,6,8],[3,7]] => 2 [[1,2,3,5,6,8],[4,7]] => 2 [[1,2,3,4,6,8],[5,7]] => 2 [[1,2,3,4,5,8],[6,7]] => 1 [[1,3,4,5,6,7],[2,8]] => 2 [[1,2,4,5,6,7],[3,8]] => 2 [[1,2,3,5,6,7],[4,8]] => 2 [[1,2,3,4,6,7],[5,8]] => 2 [[1,2,3,4,5,7],[6,8]] => 2 [[1,2,3,4,5,6],[7,8]] => 1 [[1,4,5,6,7,8],[2],[3]] => 2 [[1,3,5,6,7,8],[2],[4]] => 2 [[1,2,5,6,7,8],[3],[4]] => 2 [[1,3,4,6,7,8],[2],[5]] => 2 [[1,2,4,6,7,8],[3],[5]] => 2 [[1,2,3,6,7,8],[4],[5]] => 2 [[1,3,4,5,7,8],[2],[6]] => 2 [[1,2,4,5,7,8],[3],[6]] => 2 [[1,2,3,5,7,8],[4],[6]] => 2 [[1,2,3,4,7,8],[5],[6]] => 2 [[1,3,4,5,6,8],[2],[7]] => 2 [[1,2,4,5,6,8],[3],[7]] => 2 [[1,2,3,5,6,8],[4],[7]] => 2 [[1,2,3,4,6,8],[5],[7]] => 2 [[1,2,3,4,5,8],[6],[7]] => 2 [[1,3,4,5,6,7],[2],[8]] => 2 [[1,2,4,5,6,7],[3],[8]] => 2 [[1,2,3,5,6,7],[4],[8]] => 2 [[1,2,3,4,6,7],[5],[8]] => 2 [[1,2,3,4,5,7],[6],[8]] => 2 [[1,2,3,4,5,6],[7],[8]] => 2 [[1,3,5,7,8],[2,4,6]] => 3 [[1,2,5,7,8],[3,4,6]] => 2 [[1,3,4,7,8],[2,5,6]] => 2 [[1,2,4,7,8],[3,5,6]] => 2 [[1,2,3,7,8],[4,5,6]] => 1 [[1,3,5,6,8],[2,4,7]] => 3 [[1,2,5,6,8],[3,4,7]] => 2 [[1,3,4,6,8],[2,5,7]] => 3 [[1,2,4,6,8],[3,5,7]] => 3 [[1,2,3,6,8],[4,5,7]] => 2 [[1,3,4,5,8],[2,6,7]] => 2 [[1,2,4,5,8],[3,6,7]] => 2 [[1,2,3,5,8],[4,6,7]] => 2 [[1,2,3,4,8],[5,6,7]] => 1 [[1,3,5,6,7],[2,4,8]] => 3 [[1,2,5,6,7],[3,4,8]] => 2 [[1,3,4,6,7],[2,5,8]] => 3 [[1,2,4,6,7],[3,5,8]] => 3 [[1,2,3,6,7],[4,5,8]] => 2 [[1,3,4,5,7],[2,6,8]] => 3 [[1,2,4,5,7],[3,6,8]] => 3 [[1,2,3,5,7],[4,6,8]] => 3 [[1,2,3,4,7],[5,6,8]] => 2 [[1,3,4,5,6],[2,7,8]] => 2 [[1,2,4,5,6],[3,7,8]] => 2 [[1,2,3,5,6],[4,7,8]] => 2 [[1,2,3,4,6],[5,7,8]] => 2 [[1,2,3,4,5],[6,7,8]] => 1 [[1,4,6,7,8],[2,5],[3]] => 3 [[1,3,6,7,8],[2,5],[4]] => 2 [[1,2,6,7,8],[3,5],[4]] => 2 [[1,3,6,7,8],[2,4],[5]] => 3 [[1,2,6,7,8],[3,4],[5]] => 2 [[1,4,5,7,8],[2,6],[3]] => 3 [[1,3,5,7,8],[2,6],[4]] => 3 [[1,2,5,7,8],[3,6],[4]] => 3 [[1,3,4,7,8],[2,6],[5]] => 2 [[1,2,4,7,8],[3,6],[5]] => 2 [[1,2,3,7,8],[4,6],[5]] => 2 [[1,3,5,7,8],[2,4],[6]] => 3 [[1,2,5,7,8],[3,4],[6]] => 2 [[1,3,4,7,8],[2,5],[6]] => 3 [[1,2,4,7,8],[3,5],[6]] => 3 [[1,2,3,7,8],[4,5],[6]] => 2 [[1,4,5,6,8],[2,7],[3]] => 3 [[1,3,5,6,8],[2,7],[4]] => 3 [[1,2,5,6,8],[3,7],[4]] => 3 [[1,3,4,6,8],[2,7],[5]] => 3 [[1,2,4,6,8],[3,7],[5]] => 3 [[1,2,3,6,8],[4,7],[5]] => 3 [[1,3,4,5,8],[2,7],[6]] => 2 [[1,2,4,5,8],[3,7],[6]] => 2 [[1,2,3,5,8],[4,7],[6]] => 2 [[1,2,3,4,8],[5,7],[6]] => 2 [[1,3,5,6,8],[2,4],[7]] => 3 [[1,2,5,6,8],[3,4],[7]] => 2 [[1,3,4,6,8],[2,5],[7]] => 3 [[1,2,4,6,8],[3,5],[7]] => 3 [[1,2,3,6,8],[4,5],[7]] => 2 [[1,3,4,5,8],[2,6],[7]] => 3 [[1,2,4,5,8],[3,6],[7]] => 3 [[1,2,3,5,8],[4,6],[7]] => 3 [[1,2,3,4,8],[5,6],[7]] => 2 [[1,4,5,6,7],[2,8],[3]] => 3 [[1,3,5,6,7],[2,8],[4]] => 3 [[1,2,5,6,7],[3,8],[4]] => 3 [[1,3,4,6,7],[2,8],[5]] => 3 [[1,2,4,6,7],[3,8],[5]] => 3 [[1,2,3,6,7],[4,8],[5]] => 3 [[1,3,4,5,7],[2,8],[6]] => 3 [[1,2,4,5,7],[3,8],[6]] => 3 [[1,2,3,5,7],[4,8],[6]] => 3 [[1,2,3,4,7],[5,8],[6]] => 3 [[1,3,4,5,6],[2,8],[7]] => 2 [[1,2,4,5,6],[3,8],[7]] => 2 [[1,2,3,5,6],[4,8],[7]] => 2 [[1,2,3,4,6],[5,8],[7]] => 2 [[1,2,3,4,5],[6,8],[7]] => 2 [[1,3,5,6,7],[2,4],[8]] => 3 [[1,2,5,6,7],[3,4],[8]] => 2 [[1,3,4,6,7],[2,5],[8]] => 3 [[1,2,4,6,7],[3,5],[8]] => 3 [[1,2,3,6,7],[4,5],[8]] => 2 [[1,3,4,5,7],[2,6],[8]] => 3 [[1,2,4,5,7],[3,6],[8]] => 3 [[1,2,3,5,7],[4,6],[8]] => 3 [[1,2,3,4,7],[5,6],[8]] => 2 [[1,3,4,5,6],[2,7],[8]] => 3 [[1,2,4,5,6],[3,7],[8]] => 3 [[1,2,3,5,6],[4,7],[8]] => 3 [[1,2,3,4,6],[5,7],[8]] => 3 [[1,2,3,4,5],[6,7],[8]] => 2 [[1,5,6,7,8],[2],[3],[4]] => 3 [[1,4,6,7,8],[2],[3],[5]] => 3 [[1,3,6,7,8],[2],[4],[5]] => 3 [[1,2,6,7,8],[3],[4],[5]] => 3 [[1,4,5,7,8],[2],[3],[6]] => 3 [[1,3,5,7,8],[2],[4],[6]] => 3 [[1,2,5,7,8],[3],[4],[6]] => 3 [[1,3,4,7,8],[2],[5],[6]] => 3 [[1,2,4,7,8],[3],[5],[6]] => 3 [[1,2,3,7,8],[4],[5],[6]] => 3 [[1,4,5,6,8],[2],[3],[7]] => 3 [[1,3,5,6,8],[2],[4],[7]] => 3 [[1,2,5,6,8],[3],[4],[7]] => 3 [[1,3,4,6,8],[2],[5],[7]] => 3 [[1,2,4,6,8],[3],[5],[7]] => 3 [[1,2,3,6,8],[4],[5],[7]] => 3 [[1,3,4,5,8],[2],[6],[7]] => 3 [[1,2,4,5,8],[3],[6],[7]] => 3 [[1,2,3,5,8],[4],[6],[7]] => 3 [[1,2,3,4,8],[5],[6],[7]] => 3 [[1,4,5,6,7],[2],[3],[8]] => 3 [[1,3,5,6,7],[2],[4],[8]] => 3 [[1,2,5,6,7],[3],[4],[8]] => 3 [[1,3,4,6,7],[2],[5],[8]] => 3 [[1,2,4,6,7],[3],[5],[8]] => 3 [[1,2,3,6,7],[4],[5],[8]] => 3 [[1,3,4,5,7],[2],[6],[8]] => 3 [[1,2,4,5,7],[3],[6],[8]] => 3 [[1,2,3,5,7],[4],[6],[8]] => 3 [[1,2,3,4,7],[5],[6],[8]] => 3 [[1,3,4,5,6],[2],[7],[8]] => 3 [[1,2,4,5,6],[3],[7],[8]] => 3 [[1,2,3,5,6],[4],[7],[8]] => 3 [[1,2,3,4,6],[5],[7],[8]] => 3 [[1,2,3,4,5],[6],[7],[8]] => 3 [[1,3,5,7],[2,4,6,8]] => 4 [[1,2,5,7],[3,4,6,8]] => 3 [[1,3,4,7],[2,5,6,8]] => 3 [[1,2,4,7],[3,5,6,8]] => 3 [[1,2,3,7],[4,5,6,8]] => 2 [[1,3,5,6],[2,4,7,8]] => 3 [[1,2,5,6],[3,4,7,8]] => 2 [[1,3,4,6],[2,5,7,8]] => 3 [[1,2,4,6],[3,5,7,8]] => 3 [[1,2,3,6],[4,5,7,8]] => 2 [[1,3,4,5],[2,6,7,8]] => 2 [[1,2,4,5],[3,6,7,8]] => 2 [[1,2,3,5],[4,6,7,8]] => 2 [[1,2,3,4],[5,6,7,8]] => 1 [[1,4,6,8],[2,5,7],[3]] => 4 [[1,3,6,8],[2,5,7],[4]] => 3 [[1,2,6,8],[3,5,7],[4]] => 3 [[1,3,6,8],[2,4,7],[5]] => 4 [[1,2,6,8],[3,4,7],[5]] => 3 [[1,4,5,8],[2,6,7],[3]] => 3 [[1,3,5,8],[2,6,7],[4]] => 3 [[1,2,5,8],[3,6,7],[4]] => 3 [[1,3,4,8],[2,6,7],[5]] => 2 [[1,2,4,8],[3,6,7],[5]] => 2 [[1,2,3,8],[4,6,7],[5]] => 2 [[1,3,5,8],[2,4,7],[6]] => 3 [[1,2,5,8],[3,4,7],[6]] => 2 [[1,3,4,8],[2,5,7],[6]] => 3 [[1,2,4,8],[3,5,7],[6]] => 3 [[1,2,3,8],[4,5,7],[6]] => 2 [[1,3,5,8],[2,4,6],[7]] => 4 [[1,2,5,8],[3,4,6],[7]] => 3 [[1,3,4,8],[2,5,6],[7]] => 3 [[1,2,4,8],[3,5,6],[7]] => 3 [[1,2,3,8],[4,5,6],[7]] => 2 [[1,4,6,7],[2,5,8],[3]] => 4 [[1,3,6,7],[2,5,8],[4]] => 3 [[1,2,6,7],[3,5,8],[4]] => 3 [[1,3,6,7],[2,4,8],[5]] => 4 [[1,2,6,7],[3,4,8],[5]] => 3 [[1,4,5,7],[2,6,8],[3]] => 4 [[1,3,5,7],[2,6,8],[4]] => 4 [[1,2,5,7],[3,6,8],[4]] => 4 [[1,3,4,7],[2,6,8],[5]] => 3 [[1,2,4,7],[3,6,8],[5]] => 3 [[1,2,3,7],[4,6,8],[5]] => 3 [[1,3,5,7],[2,4,8],[6]] => 4 [[1,2,5,7],[3,4,8],[6]] => 3 [[1,3,4,7],[2,5,8],[6]] => 4 [[1,2,4,7],[3,5,8],[6]] => 4 [[1,2,3,7],[4,5,8],[6]] => 3 [[1,4,5,6],[2,7,8],[3]] => 3 [[1,3,5,6],[2,7,8],[4]] => 3 [[1,2,5,6],[3,7,8],[4]] => 3 [[1,3,4,6],[2,7,8],[5]] => 3 [[1,2,4,6],[3,7,8],[5]] => 3 [[1,2,3,6],[4,7,8],[5]] => 3 [[1,3,4,5],[2,7,8],[6]] => 2 [[1,2,4,5],[3,7,8],[6]] => 2 [[1,2,3,5],[4,7,8],[6]] => 2 [[1,2,3,4],[5,7,8],[6]] => 2 [[1,3,5,6],[2,4,8],[7]] => 3 [[1,2,5,6],[3,4,8],[7]] => 2 [[1,3,4,6],[2,5,8],[7]] => 3 [[1,2,4,6],[3,5,8],[7]] => 3 [[1,2,3,6],[4,5,8],[7]] => 2 [[1,3,4,5],[2,6,8],[7]] => 3 [[1,2,4,5],[3,6,8],[7]] => 3 [[1,2,3,5],[4,6,8],[7]] => 3 [[1,2,3,4],[5,6,8],[7]] => 2 [[1,3,5,7],[2,4,6],[8]] => 4 [[1,2,5,7],[3,4,6],[8]] => 3 [[1,3,4,7],[2,5,6],[8]] => 3 [[1,2,4,7],[3,5,6],[8]] => 3 [[1,2,3,7],[4,5,6],[8]] => 2 [[1,3,5,6],[2,4,7],[8]] => 4 [[1,2,5,6],[3,4,7],[8]] => 3 [[1,3,4,6],[2,5,7],[8]] => 4 [[1,2,4,6],[3,5,7],[8]] => 4 [[1,2,3,6],[4,5,7],[8]] => 3 [[1,3,4,5],[2,6,7],[8]] => 3 [[1,2,4,5],[3,6,7],[8]] => 3 [[1,2,3,5],[4,6,7],[8]] => 3 [[1,2,3,4],[5,6,7],[8]] => 2 [[1,4,7,8],[2,5],[3,6]] => 4 [[1,3,7,8],[2,5],[4,6]] => 3 [[1,2,7,8],[3,5],[4,6]] => 3 [[1,3,7,8],[2,4],[5,6]] => 3 [[1,2,7,8],[3,4],[5,6]] => 2 [[1,4,6,8],[2,5],[3,7]] => 4 [[1,3,6,8],[2,5],[4,7]] => 3 [[1,2,6,8],[3,5],[4,7]] => 3 [[1,3,6,8],[2,4],[5,7]] => 4 [[1,2,6,8],[3,4],[5,7]] => 3 [[1,4,5,8],[2,6],[3,7]] => 4 [[1,3,5,8],[2,6],[4,7]] => 4 [[1,2,5,8],[3,6],[4,7]] => 4 [[1,3,4,8],[2,6],[5,7]] => 3 [[1,2,4,8],[3,6],[5,7]] => 3 [[1,2,3,8],[4,6],[5,7]] => 3 [[1,3,5,8],[2,4],[6,7]] => 3 [[1,2,5,8],[3,4],[6,7]] => 2 [[1,3,4,8],[2,5],[6,7]] => 3 [[1,2,4,8],[3,5],[6,7]] => 3 [[1,2,3,8],[4,5],[6,7]] => 2 [[1,4,6,7],[2,5],[3,8]] => 4 [[1,3,6,7],[2,5],[4,8]] => 3 [[1,2,6,7],[3,5],[4,8]] => 3 [[1,3,6,7],[2,4],[5,8]] => 4 [[1,2,6,7],[3,4],[5,8]] => 3 [[1,4,5,7],[2,6],[3,8]] => 4 [[1,3,5,7],[2,6],[4,8]] => 4 [[1,2,5,7],[3,6],[4,8]] => 4 [[1,3,4,7],[2,6],[5,8]] => 3 [[1,2,4,7],[3,6],[5,8]] => 3 [[1,2,3,7],[4,6],[5,8]] => 3 [[1,3,5,7],[2,4],[6,8]] => 4 [[1,2,5,7],[3,4],[6,8]] => 3 [[1,3,4,7],[2,5],[6,8]] => 4 [[1,2,4,7],[3,5],[6,8]] => 4 [[1,2,3,7],[4,5],[6,8]] => 3 [[1,4,5,6],[2,7],[3,8]] => 4 [[1,3,5,6],[2,7],[4,8]] => 4 [[1,2,5,6],[3,7],[4,8]] => 4 [[1,3,4,6],[2,7],[5,8]] => 4 [[1,2,4,6],[3,7],[5,8]] => 4 [[1,2,3,6],[4,7],[5,8]] => 4 [[1,3,4,5],[2,7],[6,8]] => 3 [[1,2,4,5],[3,7],[6,8]] => 3 [[1,2,3,5],[4,7],[6,8]] => 3 [[1,2,3,4],[5,7],[6,8]] => 3 [[1,3,5,6],[2,4],[7,8]] => 3 [[1,2,5,6],[3,4],[7,8]] => 2 [[1,3,4,6],[2,5],[7,8]] => 3 [[1,2,4,6],[3,5],[7,8]] => 3 [[1,2,3,6],[4,5],[7,8]] => 2 [[1,3,4,5],[2,6],[7,8]] => 3 [[1,2,4,5],[3,6],[7,8]] => 3 [[1,2,3,5],[4,6],[7,8]] => 3 [[1,2,3,4],[5,6],[7,8]] => 2 [[1,5,7,8],[2,6],[3],[4]] => 4 [[1,4,7,8],[2,6],[3],[5]] => 3 [[1,3,7,8],[2,6],[4],[5]] => 3 [[1,2,7,8],[3,6],[4],[5]] => 3 [[1,4,7,8],[2,5],[3],[6]] => 4 [[1,3,7,8],[2,5],[4],[6]] => 3 [[1,2,7,8],[3,5],[4],[6]] => 3 [[1,3,7,8],[2,4],[5],[6]] => 4 [[1,2,7,8],[3,4],[5],[6]] => 3 [[1,5,6,8],[2,7],[3],[4]] => 4 [[1,4,6,8],[2,7],[3],[5]] => 4 [[1,3,6,8],[2,7],[4],[5]] => 4 [[1,2,6,8],[3,7],[4],[5]] => 4 [[1,4,5,8],[2,7],[3],[6]] => 3 [[1,3,5,8],[2,7],[4],[6]] => 3 [[1,2,5,8],[3,7],[4],[6]] => 3 [[1,3,4,8],[2,7],[5],[6]] => 3 [[1,2,4,8],[3,7],[5],[6]] => 3 [[1,2,3,8],[4,7],[5],[6]] => 3 [[1,4,6,8],[2,5],[3],[7]] => 4 [[1,3,6,8],[2,5],[4],[7]] => 3 [[1,2,6,8],[3,5],[4],[7]] => 3 [[1,3,6,8],[2,4],[5],[7]] => 4 [[1,2,6,8],[3,4],[5],[7]] => 3 [[1,4,5,8],[2,6],[3],[7]] => 4 [[1,3,5,8],[2,6],[4],[7]] => 4 [[1,2,5,8],[3,6],[4],[7]] => 4 [[1,3,4,8],[2,6],[5],[7]] => 3 [[1,2,4,8],[3,6],[5],[7]] => 3 [[1,2,3,8],[4,6],[5],[7]] => 3 [[1,3,5,8],[2,4],[6],[7]] => 4 [[1,2,5,8],[3,4],[6],[7]] => 3 [[1,3,4,8],[2,5],[6],[7]] => 4 [[1,2,4,8],[3,5],[6],[7]] => 4 [[1,2,3,8],[4,5],[6],[7]] => 3 [[1,5,6,7],[2,8],[3],[4]] => 4 [[1,4,6,7],[2,8],[3],[5]] => 4 [[1,3,6,7],[2,8],[4],[5]] => 4 [[1,2,6,7],[3,8],[4],[5]] => 4 [[1,4,5,7],[2,8],[3],[6]] => 4 [[1,3,5,7],[2,8],[4],[6]] => 4 [[1,2,5,7],[3,8],[4],[6]] => 4 [[1,3,4,7],[2,8],[5],[6]] => 4 [[1,2,4,7],[3,8],[5],[6]] => 4 [[1,2,3,7],[4,8],[5],[6]] => 4 [[1,4,5,6],[2,8],[3],[7]] => 3 [[1,3,5,6],[2,8],[4],[7]] => 3 [[1,2,5,6],[3,8],[4],[7]] => 3 [[1,3,4,6],[2,8],[5],[7]] => 3 [[1,2,4,6],[3,8],[5],[7]] => 3 [[1,2,3,6],[4,8],[5],[7]] => 3 [[1,3,4,5],[2,8],[6],[7]] => 3 [[1,2,4,5],[3,8],[6],[7]] => 3 [[1,2,3,5],[4,8],[6],[7]] => 3 [[1,2,3,4],[5,8],[6],[7]] => 3 [[1,4,6,7],[2,5],[3],[8]] => 4 [[1,3,6,7],[2,5],[4],[8]] => 3 [[1,2,6,7],[3,5],[4],[8]] => 3 [[1,3,6,7],[2,4],[5],[8]] => 4 [[1,2,6,7],[3,4],[5],[8]] => 3 [[1,4,5,7],[2,6],[3],[8]] => 4 [[1,3,5,7],[2,6],[4],[8]] => 4 [[1,2,5,7],[3,6],[4],[8]] => 4 [[1,3,4,7],[2,6],[5],[8]] => 3 [[1,2,4,7],[3,6],[5],[8]] => 3 [[1,2,3,7],[4,6],[5],[8]] => 3 [[1,3,5,7],[2,4],[6],[8]] => 4 [[1,2,5,7],[3,4],[6],[8]] => 3 [[1,3,4,7],[2,5],[6],[8]] => 4 [[1,2,4,7],[3,5],[6],[8]] => 4 [[1,2,3,7],[4,5],[6],[8]] => 3 [[1,4,5,6],[2,7],[3],[8]] => 4 [[1,3,5,6],[2,7],[4],[8]] => 4 [[1,2,5,6],[3,7],[4],[8]] => 4 [[1,3,4,6],[2,7],[5],[8]] => 4 [[1,2,4,6],[3,7],[5],[8]] => 4 [[1,2,3,6],[4,7],[5],[8]] => 4 [[1,3,4,5],[2,7],[6],[8]] => 3 [[1,2,4,5],[3,7],[6],[8]] => 3 [[1,2,3,5],[4,7],[6],[8]] => 3 [[1,2,3,4],[5,7],[6],[8]] => 3 [[1,3,5,6],[2,4],[7],[8]] => 4 [[1,2,5,6],[3,4],[7],[8]] => 3 [[1,3,4,6],[2,5],[7],[8]] => 4 [[1,2,4,6],[3,5],[7],[8]] => 4 [[1,2,3,6],[4,5],[7],[8]] => 3 [[1,3,4,5],[2,6],[7],[8]] => 4 [[1,2,4,5],[3,6],[7],[8]] => 4 [[1,2,3,5],[4,6],[7],[8]] => 4 [[1,2,3,4],[5,6],[7],[8]] => 3 [[1,6,7,8],[2],[3],[4],[5]] => 4 [[1,5,7,8],[2],[3],[4],[6]] => 4 [[1,4,7,8],[2],[3],[5],[6]] => 4 [[1,3,7,8],[2],[4],[5],[6]] => 4 [[1,2,7,8],[3],[4],[5],[6]] => 4 [[1,5,6,8],[2],[3],[4],[7]] => 4 [[1,4,6,8],[2],[3],[5],[7]] => 4 [[1,3,6,8],[2],[4],[5],[7]] => 4 [[1,2,6,8],[3],[4],[5],[7]] => 4 [[1,4,5,8],[2],[3],[6],[7]] => 4 [[1,3,5,8],[2],[4],[6],[7]] => 4 [[1,2,5,8],[3],[4],[6],[7]] => 4 [[1,3,4,8],[2],[5],[6],[7]] => 4 [[1,2,4,8],[3],[5],[6],[7]] => 4 [[1,2,3,8],[4],[5],[6],[7]] => 4 [[1,5,6,7],[2],[3],[4],[8]] => 4 [[1,4,6,7],[2],[3],[5],[8]] => 4 [[1,3,6,7],[2],[4],[5],[8]] => 4 [[1,2,6,7],[3],[4],[5],[8]] => 4 [[1,4,5,7],[2],[3],[6],[8]] => 4 [[1,3,5,7],[2],[4],[6],[8]] => 4 [[1,2,5,7],[3],[4],[6],[8]] => 4 [[1,3,4,7],[2],[5],[6],[8]] => 4 [[1,2,4,7],[3],[5],[6],[8]] => 4 [[1,2,3,7],[4],[5],[6],[8]] => 4 [[1,4,5,6],[2],[3],[7],[8]] => 4 [[1,3,5,6],[2],[4],[7],[8]] => 4 [[1,2,5,6],[3],[4],[7],[8]] => 4 [[1,3,4,6],[2],[5],[7],[8]] => 4 [[1,2,4,6],[3],[5],[7],[8]] => 4 [[1,2,3,6],[4],[5],[7],[8]] => 4 [[1,3,4,5],[2],[6],[7],[8]] => 4 [[1,2,4,5],[3],[6],[7],[8]] => 4 [[1,2,3,5],[4],[6],[7],[8]] => 4 [[1,2,3,4],[5],[6],[7],[8]] => 4 [[1,4,7],[2,5,8],[3,6]] => 5 [[1,3,7],[2,5,8],[4,6]] => 4 [[1,2,7],[3,5,8],[4,6]] => 4 [[1,3,7],[2,4,8],[5,6]] => 4 [[1,2,7],[3,4,8],[5,6]] => 3 [[1,4,6],[2,5,8],[3,7]] => 4 [[1,3,6],[2,5,8],[4,7]] => 3 [[1,2,6],[3,5,8],[4,7]] => 3 [[1,3,6],[2,4,8],[5,7]] => 4 [[1,2,6],[3,4,8],[5,7]] => 3 [[1,4,5],[2,6,8],[3,7]] => 4 [[1,3,5],[2,6,8],[4,7]] => 4 [[1,2,5],[3,6,8],[4,7]] => 4 [[1,3,4],[2,6,8],[5,7]] => 3 [[1,2,4],[3,6,8],[5,7]] => 3 [[1,2,3],[4,6,8],[5,7]] => 3 [[1,3,5],[2,4,8],[6,7]] => 3 [[1,2,5],[3,4,8],[6,7]] => 2 [[1,3,4],[2,5,8],[6,7]] => 3 [[1,2,4],[3,5,8],[6,7]] => 3 [[1,2,3],[4,5,8],[6,7]] => 2 [[1,4,6],[2,5,7],[3,8]] => 5 [[1,3,6],[2,5,7],[4,8]] => 4 [[1,2,6],[3,5,7],[4,8]] => 4 [[1,3,6],[2,4,7],[5,8]] => 5 [[1,2,6],[3,4,7],[5,8]] => 4 [[1,4,5],[2,6,7],[3,8]] => 4 [[1,3,5],[2,6,7],[4,8]] => 4 [[1,2,5],[3,6,7],[4,8]] => 4 [[1,3,4],[2,6,7],[5,8]] => 3 [[1,2,4],[3,6,7],[5,8]] => 3 [[1,2,3],[4,6,7],[5,8]] => 3 [[1,3,5],[2,4,7],[6,8]] => 4 [[1,2,5],[3,4,7],[6,8]] => 3 [[1,3,4],[2,5,7],[6,8]] => 4 [[1,2,4],[3,5,7],[6,8]] => 4 [[1,2,3],[4,5,7],[6,8]] => 3 [[1,3,5],[2,4,6],[7,8]] => 4 [[1,2,5],[3,4,6],[7,8]] => 3 [[1,3,4],[2,5,6],[7,8]] => 3 [[1,2,4],[3,5,6],[7,8]] => 3 [[1,2,3],[4,5,6],[7,8]] => 2 [[1,5,7],[2,6,8],[3],[4]] => 5 [[1,4,7],[2,6,8],[3],[5]] => 4 [[1,3,7],[2,6,8],[4],[5]] => 4 [[1,2,7],[3,6,8],[4],[5]] => 4 [[1,4,7],[2,5,8],[3],[6]] => 5 [[1,3,7],[2,5,8],[4],[6]] => 4 [[1,2,7],[3,5,8],[4],[6]] => 4 [[1,3,7],[2,4,8],[5],[6]] => 5 [[1,2,7],[3,4,8],[5],[6]] => 4 [[1,5,6],[2,7,8],[3],[4]] => 4 [[1,4,6],[2,7,8],[3],[5]] => 4 [[1,3,6],[2,7,8],[4],[5]] => 4 [[1,2,6],[3,7,8],[4],[5]] => 4 [[1,4,5],[2,7,8],[3],[6]] => 3 [[1,3,5],[2,7,8],[4],[6]] => 3 [[1,2,5],[3,7,8],[4],[6]] => 3 [[1,3,4],[2,7,8],[5],[6]] => 3 [[1,2,4],[3,7,8],[5],[6]] => 3 [[1,2,3],[4,7,8],[5],[6]] => 3 [[1,4,6],[2,5,8],[3],[7]] => 4 [[1,3,6],[2,5,8],[4],[7]] => 3 [[1,2,6],[3,5,8],[4],[7]] => 3 [[1,3,6],[2,4,8],[5],[7]] => 4 [[1,2,6],[3,4,8],[5],[7]] => 3 [[1,4,5],[2,6,8],[3],[7]] => 4 [[1,3,5],[2,6,8],[4],[7]] => 4 [[1,2,5],[3,6,8],[4],[7]] => 4 [[1,3,4],[2,6,8],[5],[7]] => 3 [[1,2,4],[3,6,8],[5],[7]] => 3 [[1,2,3],[4,6,8],[5],[7]] => 3 [[1,3,5],[2,4,8],[6],[7]] => 4 [[1,2,5],[3,4,8],[6],[7]] => 3 [[1,3,4],[2,5,8],[6],[7]] => 4 [[1,2,4],[3,5,8],[6],[7]] => 4 [[1,2,3],[4,5,8],[6],[7]] => 3 [[1,4,6],[2,5,7],[3],[8]] => 5 [[1,3,6],[2,5,7],[4],[8]] => 4 [[1,2,6],[3,5,7],[4],[8]] => 4 [[1,3,6],[2,4,7],[5],[8]] => 5 [[1,2,6],[3,4,7],[5],[8]] => 4 [[1,4,5],[2,6,7],[3],[8]] => 4 [[1,3,5],[2,6,7],[4],[8]] => 4 [[1,2,5],[3,6,7],[4],[8]] => 4 [[1,3,4],[2,6,7],[5],[8]] => 3 [[1,2,4],[3,6,7],[5],[8]] => 3 [[1,2,3],[4,6,7],[5],[8]] => 3 [[1,3,5],[2,4,7],[6],[8]] => 4 [[1,2,5],[3,4,7],[6],[8]] => 3 [[1,3,4],[2,5,7],[6],[8]] => 4 [[1,2,4],[3,5,7],[6],[8]] => 4 [[1,2,3],[4,5,7],[6],[8]] => 3 [[1,3,5],[2,4,6],[7],[8]] => 5 [[1,2,5],[3,4,6],[7],[8]] => 4 [[1,3,4],[2,5,6],[7],[8]] => 4 [[1,2,4],[3,5,6],[7],[8]] => 4 [[1,2,3],[4,5,6],[7],[8]] => 3 [[1,5,8],[2,6],[3,7],[4]] => 5 [[1,4,8],[2,6],[3,7],[5]] => 4 [[1,3,8],[2,6],[4,7],[5]] => 4 [[1,2,8],[3,6],[4,7],[5]] => 4 [[1,4,8],[2,5],[3,7],[6]] => 4 [[1,3,8],[2,5],[4,7],[6]] => 3 [[1,2,8],[3,5],[4,7],[6]] => 3 [[1,3,8],[2,4],[5,7],[6]] => 4 [[1,2,8],[3,4],[5,7],[6]] => 3 [[1,4,8],[2,5],[3,6],[7]] => 5 [[1,3,8],[2,5],[4,6],[7]] => 4 [[1,2,8],[3,5],[4,6],[7]] => 4 [[1,3,8],[2,4],[5,6],[7]] => 4 [[1,2,8],[3,4],[5,6],[7]] => 3 [[1,5,7],[2,6],[3,8],[4]] => 5 [[1,4,7],[2,6],[3,8],[5]] => 4 [[1,3,7],[2,6],[4,8],[5]] => 4 [[1,2,7],[3,6],[4,8],[5]] => 4 [[1,4,7],[2,5],[3,8],[6]] => 5 [[1,3,7],[2,5],[4,8],[6]] => 4 [[1,2,7],[3,5],[4,8],[6]] => 4 [[1,3,7],[2,4],[5,8],[6]] => 5 [[1,2,7],[3,4],[5,8],[6]] => 4 [[1,5,6],[2,7],[3,8],[4]] => 5 [[1,4,6],[2,7],[3,8],[5]] => 5 [[1,3,6],[2,7],[4,8],[5]] => 5 [[1,2,6],[3,7],[4,8],[5]] => 5 [[1,4,5],[2,7],[3,8],[6]] => 4 [[1,3,5],[2,7],[4,8],[6]] => 4 [[1,2,5],[3,7],[4,8],[6]] => 4 [[1,3,4],[2,7],[5,8],[6]] => 4 [[1,2,4],[3,7],[5,8],[6]] => 4 [[1,2,3],[4,7],[5,8],[6]] => 4 [[1,4,6],[2,5],[3,8],[7]] => 4 [[1,3,6],[2,5],[4,8],[7]] => 3 [[1,2,6],[3,5],[4,8],[7]] => 3 [[1,3,6],[2,4],[5,8],[7]] => 4 [[1,2,6],[3,4],[5,8],[7]] => 3 [[1,4,5],[2,6],[3,8],[7]] => 4 [[1,3,5],[2,6],[4,8],[7]] => 4 [[1,2,5],[3,6],[4,8],[7]] => 4 [[1,3,4],[2,6],[5,8],[7]] => 3 [[1,2,4],[3,6],[5,8],[7]] => 3 [[1,2,3],[4,6],[5,8],[7]] => 3 [[1,3,5],[2,4],[6,8],[7]] => 4 [[1,2,5],[3,4],[6,8],[7]] => 3 [[1,3,4],[2,5],[6,8],[7]] => 4 [[1,2,4],[3,5],[6,8],[7]] => 4 [[1,2,3],[4,5],[6,8],[7]] => 3 [[1,4,7],[2,5],[3,6],[8]] => 5 [[1,3,7],[2,5],[4,6],[8]] => 4 [[1,2,7],[3,5],[4,6],[8]] => 4 [[1,3,7],[2,4],[5,6],[8]] => 4 [[1,2,7],[3,4],[5,6],[8]] => 3 [[1,4,6],[2,5],[3,7],[8]] => 5 [[1,3,6],[2,5],[4,7],[8]] => 4 [[1,2,6],[3,5],[4,7],[8]] => 4 [[1,3,6],[2,4],[5,7],[8]] => 5 [[1,2,6],[3,4],[5,7],[8]] => 4 [[1,4,5],[2,6],[3,7],[8]] => 5 [[1,3,5],[2,6],[4,7],[8]] => 5 [[1,2,5],[3,6],[4,7],[8]] => 5 [[1,3,4],[2,6],[5,7],[8]] => 4 [[1,2,4],[3,6],[5,7],[8]] => 4 [[1,2,3],[4,6],[5,7],[8]] => 4 [[1,3,5],[2,4],[6,7],[8]] => 4 [[1,2,5],[3,4],[6,7],[8]] => 3 [[1,3,4],[2,5],[6,7],[8]] => 4 [[1,2,4],[3,5],[6,7],[8]] => 4 [[1,2,3],[4,5],[6,7],[8]] => 3 [[1,6,8],[2,7],[3],[4],[5]] => 5 [[1,5,8],[2,7],[3],[4],[6]] => 4 [[1,4,8],[2,7],[3],[5],[6]] => 4 [[1,3,8],[2,7],[4],[5],[6]] => 4 [[1,2,8],[3,7],[4],[5],[6]] => 4 [[1,5,8],[2,6],[3],[4],[7]] => 5 [[1,4,8],[2,6],[3],[5],[7]] => 4 [[1,3,8],[2,6],[4],[5],[7]] => 4 [[1,2,8],[3,6],[4],[5],[7]] => 4 [[1,4,8],[2,5],[3],[6],[7]] => 5 [[1,3,8],[2,5],[4],[6],[7]] => 4 [[1,2,8],[3,5],[4],[6],[7]] => 4 [[1,3,8],[2,4],[5],[6],[7]] => 5 [[1,2,8],[3,4],[5],[6],[7]] => 4 [[1,6,7],[2,8],[3],[4],[5]] => 5 [[1,5,7],[2,8],[3],[4],[6]] => 5 [[1,4,7],[2,8],[3],[5],[6]] => 5 [[1,3,7],[2,8],[4],[5],[6]] => 5 [[1,2,7],[3,8],[4],[5],[6]] => 5 [[1,5,6],[2,8],[3],[4],[7]] => 4 [[1,4,6],[2,8],[3],[5],[7]] => 4 [[1,3,6],[2,8],[4],[5],[7]] => 4 [[1,2,6],[3,8],[4],[5],[7]] => 4 [[1,4,5],[2,8],[3],[6],[7]] => 4 [[1,3,5],[2,8],[4],[6],[7]] => 4 [[1,2,5],[3,8],[4],[6],[7]] => 4 [[1,3,4],[2,8],[5],[6],[7]] => 4 [[1,2,4],[3,8],[5],[6],[7]] => 4 [[1,2,3],[4,8],[5],[6],[7]] => 4 [[1,5,7],[2,6],[3],[4],[8]] => 5 [[1,4,7],[2,6],[3],[5],[8]] => 4 [[1,3,7],[2,6],[4],[5],[8]] => 4 [[1,2,7],[3,6],[4],[5],[8]] => 4 [[1,4,7],[2,5],[3],[6],[8]] => 5 [[1,3,7],[2,5],[4],[6],[8]] => 4 [[1,2,7],[3,5],[4],[6],[8]] => 4 [[1,3,7],[2,4],[5],[6],[8]] => 5 [[1,2,7],[3,4],[5],[6],[8]] => 4 [[1,5,6],[2,7],[3],[4],[8]] => 5 [[1,4,6],[2,7],[3],[5],[8]] => 5 [[1,3,6],[2,7],[4],[5],[8]] => 5 [[1,2,6],[3,7],[4],[5],[8]] => 5 [[1,4,5],[2,7],[3],[6],[8]] => 4 [[1,3,5],[2,7],[4],[6],[8]] => 4 [[1,2,5],[3,7],[4],[6],[8]] => 4 [[1,3,4],[2,7],[5],[6],[8]] => 4 [[1,2,4],[3,7],[5],[6],[8]] => 4 [[1,2,3],[4,7],[5],[6],[8]] => 4 [[1,4,6],[2,5],[3],[7],[8]] => 5 [[1,3,6],[2,5],[4],[7],[8]] => 4 [[1,2,6],[3,5],[4],[7],[8]] => 4 [[1,3,6],[2,4],[5],[7],[8]] => 5 [[1,2,6],[3,4],[5],[7],[8]] => 4 [[1,4,5],[2,6],[3],[7],[8]] => 5 [[1,3,5],[2,6],[4],[7],[8]] => 5 [[1,2,5],[3,6],[4],[7],[8]] => 5 [[1,3,4],[2,6],[5],[7],[8]] => 4 [[1,2,4],[3,6],[5],[7],[8]] => 4 [[1,2,3],[4,6],[5],[7],[8]] => 4 [[1,3,5],[2,4],[6],[7],[8]] => 5 [[1,2,5],[3,4],[6],[7],[8]] => 4 [[1,3,4],[2,5],[6],[7],[8]] => 5 [[1,2,4],[3,5],[6],[7],[8]] => 5 [[1,2,3],[4,5],[6],[7],[8]] => 4 [[1,7,8],[2],[3],[4],[5],[6]] => 5 [[1,6,8],[2],[3],[4],[5],[7]] => 5 [[1,5,8],[2],[3],[4],[6],[7]] => 5 [[1,4,8],[2],[3],[5],[6],[7]] => 5 [[1,3,8],[2],[4],[5],[6],[7]] => 5 [[1,2,8],[3],[4],[5],[6],[7]] => 5 [[1,6,7],[2],[3],[4],[5],[8]] => 5 [[1,5,7],[2],[3],[4],[6],[8]] => 5 [[1,4,7],[2],[3],[5],[6],[8]] => 5 [[1,3,7],[2],[4],[5],[6],[8]] => 5 [[1,2,7],[3],[4],[5],[6],[8]] => 5 [[1,5,6],[2],[3],[4],[7],[8]] => 5 [[1,4,6],[2],[3],[5],[7],[8]] => 5 [[1,3,6],[2],[4],[5],[7],[8]] => 5 [[1,2,6],[3],[4],[5],[7],[8]] => 5 [[1,4,5],[2],[3],[6],[7],[8]] => 5 [[1,3,5],[2],[4],[6],[7],[8]] => 5 [[1,2,5],[3],[4],[6],[7],[8]] => 5 [[1,3,4],[2],[5],[6],[7],[8]] => 5 [[1,2,4],[3],[5],[6],[7],[8]] => 5 [[1,2,3],[4],[5],[6],[7],[8]] => 5 [[1,5],[2,6],[3,7],[4,8]] => 6 [[1,4],[2,6],[3,7],[5,8]] => 5 [[1,3],[2,6],[4,7],[5,8]] => 5 [[1,2],[3,6],[4,7],[5,8]] => 5 [[1,4],[2,5],[3,7],[6,8]] => 5 [[1,3],[2,5],[4,7],[6,8]] => 4 [[1,2],[3,5],[4,7],[6,8]] => 4 [[1,3],[2,4],[5,7],[6,8]] => 5 [[1,2],[3,4],[5,7],[6,8]] => 4 [[1,4],[2,5],[3,6],[7,8]] => 5 [[1,3],[2,5],[4,6],[7,8]] => 4 [[1,2],[3,5],[4,6],[7,8]] => 4 [[1,3],[2,4],[5,6],[7,8]] => 4 [[1,2],[3,4],[5,6],[7,8]] => 3 [[1,6],[2,7],[3,8],[4],[5]] => 6 [[1,5],[2,7],[3,8],[4],[6]] => 5 [[1,4],[2,7],[3,8],[5],[6]] => 5 [[1,3],[2,7],[4,8],[5],[6]] => 5 [[1,2],[3,7],[4,8],[5],[6]] => 5 [[1,5],[2,6],[3,8],[4],[7]] => 5 [[1,4],[2,6],[3,8],[5],[7]] => 4 [[1,3],[2,6],[4,8],[5],[7]] => 4 [[1,2],[3,6],[4,8],[5],[7]] => 4 [[1,4],[2,5],[3,8],[6],[7]] => 5 [[1,3],[2,5],[4,8],[6],[7]] => 4 [[1,2],[3,5],[4,8],[6],[7]] => 4 [[1,3],[2,4],[5,8],[6],[7]] => 5 [[1,2],[3,4],[5,8],[6],[7]] => 4 [[1,5],[2,6],[3,7],[4],[8]] => 6 [[1,4],[2,6],[3,7],[5],[8]] => 5 [[1,3],[2,6],[4,7],[5],[8]] => 5 [[1,2],[3,6],[4,7],[5],[8]] => 5 [[1,4],[2,5],[3,7],[6],[8]] => 5 [[1,3],[2,5],[4,7],[6],[8]] => 4 [[1,2],[3,5],[4,7],[6],[8]] => 4 [[1,3],[2,4],[5,7],[6],[8]] => 5 [[1,2],[3,4],[5,7],[6],[8]] => 4 [[1,4],[2,5],[3,6],[7],[8]] => 6 [[1,3],[2,5],[4,6],[7],[8]] => 5 [[1,2],[3,5],[4,6],[7],[8]] => 5 [[1,3],[2,4],[5,6],[7],[8]] => 5 [[1,2],[3,4],[5,6],[7],[8]] => 4 [[1,7],[2,8],[3],[4],[5],[6]] => 6 [[1,6],[2,8],[3],[4],[5],[7]] => 5 [[1,5],[2,8],[3],[4],[6],[7]] => 5 [[1,4],[2,8],[3],[5],[6],[7]] => 5 [[1,3],[2,8],[4],[5],[6],[7]] => 5 [[1,2],[3,8],[4],[5],[6],[7]] => 5 [[1,6],[2,7],[3],[4],[5],[8]] => 6 [[1,5],[2,7],[3],[4],[6],[8]] => 5 [[1,4],[2,7],[3],[5],[6],[8]] => 5 [[1,3],[2,7],[4],[5],[6],[8]] => 5 [[1,2],[3,7],[4],[5],[6],[8]] => 5 [[1,5],[2,6],[3],[4],[7],[8]] => 6 [[1,4],[2,6],[3],[5],[7],[8]] => 5 [[1,3],[2,6],[4],[5],[7],[8]] => 5 [[1,2],[3,6],[4],[5],[7],[8]] => 5 [[1,4],[2,5],[3],[6],[7],[8]] => 6 [[1,3],[2,5],[4],[6],[7],[8]] => 5 [[1,2],[3,5],[4],[6],[7],[8]] => 5 [[1,3],[2,4],[5],[6],[7],[8]] => 6 [[1,2],[3,4],[5],[6],[7],[8]] => 5 [[1,8],[2],[3],[4],[5],[6],[7]] => 6 [[1,7],[2],[3],[4],[5],[6],[8]] => 6 [[1,6],[2],[3],[4],[5],[7],[8]] => 6 [[1,5],[2],[3],[4],[6],[7],[8]] => 6 [[1,4],[2],[3],[5],[6],[7],[8]] => 6 [[1,3],[2],[4],[5],[6],[7],[8]] => 6 [[1,2],[3],[4],[5],[6],[7],[8]] => 6 [[1],[2],[3],[4],[5],[6],[7],[8]] => 7 [[1,2,3,4,5,6,7,8,9]] => 0 [[1,2,3,4,5,6,7,8],[9]] => 1 [[1,2,3,4,5,6,7],[8,9]] => 1 [[1,2,3,4,5,6,7],[8],[9]] => 2 [[1,2,3,4,5,6],[7,8,9]] => 1 [[1,2,3,4,5,6],[7,8],[9]] => 2 [[1,2,3,4,5,6],[7],[8],[9]] => 3 [[1,2,3,4,5],[6,7,8,9]] => 1 [[1,2,3,4,5],[6,7,8],[9]] => 2 [[1,2,3,4,5],[6,7],[8,9]] => 2 [[1,2,3,4,5],[6,7],[8],[9]] => 3 [[1,2,3,4,5],[6],[7],[8],[9]] => 4 [[1,2,3,4],[5,6,7,8],[9]] => 2 [[1,2,3,4],[5,6,7],[8,9]] => 2 [[1,2,3,4],[5,6,7],[8],[9]] => 3 [[1,2,3,4],[5,6],[7,8],[9]] => 3 [[1,2,3,4],[5,6],[7],[8],[9]] => 4 [[1,2,3,4],[5],[6],[7],[8],[9]] => 5 [[1,2,3],[4,5,6],[7,8,9]] => 2 [[1,2,3],[4,5,6],[7,8],[9]] => 3 [[1,2,3],[4,5,6],[7],[8],[9]] => 4 [[1,2,3],[4,5],[6,7],[8,9]] => 3 [[1,2,3],[4,5],[6,7],[8],[9]] => 4 [[1,2,3],[4,5],[6],[7],[8],[9]] => 5 [[1,2,3],[4],[5],[6],[7],[8],[9]] => 6 [[1,2],[3,4],[5,6],[7,8],[9]] => 4 [[1,2],[3,4],[5,6],[7],[8],[9]] => 5 [[1,2],[3,4],[5],[6],[7],[8],[9]] => 6 [[1,2],[3],[4],[5],[6],[7],[8],[9]] => 7 [[1],[2],[3],[4],[5],[6],[7],[8],[9]] => 8 [[1,3,4,5,6,7,8,9],[2]] => 1 [[1,2,5,6,7,8,9],[3,4]] => 1 [[1,4,5,6,7,8,9],[2],[3]] => 2 [[1,2,3,7,8,9],[4,5,6]] => 1 [[1,3,6,7,8,9],[2,5],[4]] => 2 [[1,5,6,7,8,9],[2],[3],[4]] => 3 [[1,2,3,4,9],[5,6,7,8]] => 1 [[1,3,4,8,9],[2,6,7],[5]] => 2 [[1,2,7,8,9],[3,4],[5,6]] => 2 [[1,4,7,8,9],[2,6],[3],[5]] => 3 [[1,6,7,8,9],[2],[3],[4],[5]] => 4 [[1,3,4,5],[2,7,8,9],[6]] => 2 [[1,2,5,9],[3,4,8],[6,7]] => 2 [[1,4,5,9],[2,7,8],[3],[6]] => 3 [[1,3,8,9],[2,5],[4,7],[6]] => 3 [[1,5,8,9],[2,7],[3],[4],[6]] => 4 [[1,7,8,9],[2],[3],[4],[5],[6]] => 5 [[1,3,6],[2,5,9],[4,8],[7]] => 3 [[1,5,6],[2,8,9],[3],[4],[7]] => 4 [[1,2,9],[3,4],[5,6],[7,8]] => 3 [[1,4,9],[2,6],[3,8],[5],[7]] => 4 [[1,6,9],[2,8],[3],[4],[5],[7]] => 5 [[1,8,9],[2],[3],[4],[5],[6],[7]] => 6 [[1,3],[2,5],[4,7],[6,9],[8]] => 4 [[1,5],[2,7],[3,9],[4],[6],[8]] => 5 [[1,7],[2,9],[3],[4],[5],[6],[8]] => 6 [[1,9],[2],[3],[4],[5],[6],[7],[8]] => 7 [[1,8],[2,9],[3],[4],[5],[6],[7]] => 7 [[1,7],[2,8],[3,9],[4],[5],[6]] => 7 [[1,7,9],[2,8],[3],[4],[5],[6]] => 6 [[1,6],[2,7],[3,8],[4,9],[5]] => 7 [[1,6,9],[2,7],[3,8],[4],[5]] => 6 [[1,6,8],[2,7,9],[3],[4],[5]] => 6 [[1,6,8,9],[2,7],[3],[4],[5]] => 5 [[1,5,9],[2,6],[3,7],[4,8]] => 6 [[1,5,8],[2,6,9],[3,7],[4]] => 6 [[1,5,8,9],[2,6],[3,7],[4]] => 5 [[1,5,7,9],[2,6,8],[3],[4]] => 5 [[1,5,7,8,9],[2,6],[3],[4]] => 4 [[1,4,7],[2,5,8],[3,6,9]] => 6 [[1,4,7,9],[2,5,8],[3,6]] => 5 [[1,4,7,8,9],[2,5],[3,6]] => 4 [[1,4,6,8],[2,5,7,9],[3]] => 5 [[1,4,6,8,9],[2,5,7],[3]] => 4 [[1,4,6,7,8,9],[2,5],[3]] => 3 [[1,3,5,7,9],[2,4,6,8]] => 4 [[1,3,5,7,8,9],[2,4,6]] => 3 [[1,3,5,6,7,8,9],[2,4]] => 2 [[1,3],[2,4],[5],[6],[7],[8],[9]] => 7 [[1,4],[2,5],[3,6],[7],[8],[9]] => 7 [[1,2,4],[3,5],[6],[7],[8],[9]] => 6 [[1,5],[2,6],[3,7],[4,8],[9]] => 7 [[1,2,5],[3,6],[4,7],[8],[9]] => 6 [[1,3,5],[2,4,6],[7],[8],[9]] => 6 [[1,2,3,5],[4,6],[7],[8],[9]] => 5 [[1,2,6],[3,7],[4,8],[5,9]] => 6 [[1,3,6],[2,4,7],[5,8],[9]] => 6 [[1,2,3,6],[4,7],[5,8],[9]] => 5 [[1,2,4,6],[3,5,7],[8],[9]] => 5 [[1,2,3,4,6],[5,7],[8],[9]] => 4 [[1,2,4,7],[3,5,8],[6,9]] => 5 [[1,2,3,4,7],[5,8],[6,9]] => 4 [[1,3,5,7],[2,4,6,8],[9]] => 5 [[1,2,3,5,7],[4,6,8],[9]] => 4 [[1,2,3,4,5,7],[6,8],[9]] => 3 [[1,2,4,6,8],[3,5,7,9]] => 4 [[1,2,3,4,6,8],[5,7,9]] => 3 [[1,2,3,4,5,6,8],[7,9]] => 2 [[1,2,3,4,9],[5,6],[7,8]] => 2 [[1,2,9],[3],[4],[5],[6],[7],[8]] => 6 [[1,2,4,5,6,7,8,9],[3]] => 1 [[1,2,5,6,7,8,9],[3],[4]] => 2 [[1,2,6,7,8,9],[3],[4],[5]] => 3 [[1,2,7,8,9],[3],[4],[5],[6]] => 4 [[1,2,8,9],[3],[4],[5],[6],[7]] => 5 [[1,2,3,4,7,8,9],[5,6]] => 1 [[1,2,4,5,8,9],[3,7],[6]] => 2 [[1,2,4,5,6,7],[3,9],[8]] => 2 [[1,2,5,6,9],[3,8],[4],[7]] => 3 [[1,2,3,4,7,8],[5,6],[9]] => 2 [[1,2,5,6,7,8],[3],[4],[9]] => 3 [[1,2,4,5],[3,7],[6,9],[8]] => 3 [[1,2,6,7],[3,9],[4],[5],[8]] => 4 [[1,2,5,6],[3,8],[4],[7],[9]] => 4 [[1,2,7,8],[3],[4],[5],[6],[9]] => 5 [[1,3,5,7,9],[2,4,6,8,10]] => 5 [[1,3,5,7,8],[2,4,6,9,10]] => 4 [[1,3,5,6,9],[2,4,7,8,10]] => 4 [[1,3,5,6,8],[2,4,7,9,10]] => 4 [[1,3,5,6,7],[2,4,8,9,10]] => 3 [[1,3,4,7,9],[2,5,6,8,10]] => 4 [[1,3,4,7,8],[2,5,6,9,10]] => 3 [[1,3,4,6,9],[2,5,7,8,10]] => 4 [[1,3,4,6,8],[2,5,7,9,10]] => 4 [[1,3,4,6,7],[2,5,8,9,10]] => 3 [[1,3,4,5,9],[2,6,7,8,10]] => 3 [[1,3,4,5,8],[2,6,7,9,10]] => 3 [[1,3,4,5,7],[2,6,8,9,10]] => 3 [[1,3,4,5,6],[2,7,8,9,10]] => 2 [[1,2,5,7,9],[3,4,6,8,10]] => 4 [[1,2,5,7,8],[3,4,6,9,10]] => 3 [[1,2,5,6,9],[3,4,7,8,10]] => 3 [[1,2,5,6,8],[3,4,7,9,10]] => 3 [[1,2,5,6,7],[3,4,8,9,10]] => 2 [[1,2,4,7,9],[3,5,6,8,10]] => 4 [[1,2,4,7,8],[3,5,6,9,10]] => 3 [[1,2,4,6,9],[3,5,7,8,10]] => 4 [[1,2,4,6,8],[3,5,7,9,10]] => 4 [[1,2,4,6,7],[3,5,8,9,10]] => 3 [[1,2,4,5,9],[3,6,7,8,10]] => 3 [[1,2,4,5,8],[3,6,7,9,10]] => 3 [[1,2,4,5,7],[3,6,8,9,10]] => 3 [[1,2,4,5,6],[3,7,8,9,10]] => 2 [[1,2,3,7,9],[4,5,6,8,10]] => 3 [[1,2,3,7,8],[4,5,6,9,10]] => 2 [[1,2,3,6,9],[4,5,7,8,10]] => 3 [[1,2,3,6,8],[4,5,7,9,10]] => 3 [[1,2,3,6,7],[4,5,8,9,10]] => 2 [[1,2,3,5,9],[4,6,7,8,10]] => 3 [[1,2,3,5,8],[4,6,7,9,10]] => 3 [[1,2,3,5,7],[4,6,8,9,10]] => 3 [[1,2,3,5,6],[4,7,8,9,10]] => 2 [[1,2,3,4,9],[5,6,7,8,10]] => 2 [[1,2,3,4,8],[5,6,7,9,10]] => 2 [[1,2,3,4,7],[5,6,8,9,10]] => 2 [[1,2,3,4,6],[5,7,8,9,10]] => 2 [[1,2,3,4,5],[6,7,8,9,10]] => 1 [[1,2,3,4,5,6,7,8,9,10]] => 0 [[1,2,3,4,5,6,7,8,9],[10]] => 1 [[1,2,3,4,5,6,7,8],[9,10]] => 1 [[1,2,3,4,5,6,7,8],[9],[10]] => 2 [[1,2,3,4,5,6,7],[8,9,10]] => 1 [[1,2,3,4,5,6,7],[8,9],[10]] => 2 [[1,2,3,4,5,6,7],[8],[9],[10]] => 3 [[1,2,3,4,5,6],[7,8,9,10]] => 1 [[1,2,3,4,5,6],[7,8,9],[10]] => 2 [[1,2,3,4,5,6],[7,8],[9,10]] => 2 [[1,2,3,4,5,6],[7,8],[9],[10]] => 3 [[1,2,3,4,5,6],[7],[8],[9],[10]] => 4 [[1,2,3,4,5],[6,7,8,9],[10]] => 2 [[1,2,3,4,5],[6,7,8],[9,10]] => 2 [[1,2,3,4,5],[6,7,8],[9],[10]] => 3 [[1,2,3,4,5],[6,7],[8,9],[10]] => 3 [[1,2,3,4,5],[6,7],[8],[9],[10]] => 4 [[1,2,3,4,5],[6],[7],[8],[9],[10]] => 5 [[1,2,3,4],[5,6,7,8],[9,10]] => 2 [[1,2,3,4],[5,6,7,8],[9],[10]] => 3 [[1,2,3,4],[5,6,7],[8,9,10]] => 2 [[1,2,3,4],[5,6,7],[8,9],[10]] => 3 [[1,2,3,4],[5,6,7],[8],[9],[10]] => 4 [[1,2,3,4],[5,6],[7,8],[9,10]] => 3 [[1,2,3,4],[5,6],[7,8],[9],[10]] => 4 [[1,2,3,4],[5,6],[7],[8],[9],[10]] => 5 [[1,2,3,4],[5],[6],[7],[8],[9],[10]] => 6 [[1,2,3],[4,5,6],[7,8,9],[10]] => 3 [[1,2,3],[4,5,6],[7,8],[9,10]] => 3 [[1,2,3],[4,5,6],[7,8],[9],[10]] => 4 [[1,2,3],[4,5,6],[7],[8],[9],[10]] => 5 [[1,2,3],[4,5],[6,7],[8,9],[10]] => 4 [[1,2,3],[4,5],[6,7],[8],[9],[10]] => 5 [[1,2,3],[4,5],[6],[7],[8],[9],[10]] => 6 [[1,2,3],[4],[5],[6],[7],[8],[9],[10]] => 7 [[1,2],[3,4],[5,6],[7,8],[9,10]] => 4 [[1,2],[3,4],[5,6],[7,8],[9],[10]] => 5 [[1,2],[3,4],[5,6],[7],[8],[9],[10]] => 6 [[1,2],[3,4],[5],[6],[7],[8],[9],[10]] => 7 [[1,2],[3],[4],[5],[6],[7],[8],[9],[10]] => 8 [[1],[2],[3],[4],[5],[6],[7],[8],[9],[10]] => 9 [[1,3,4,5,6,7,8,9,10],[2]] => 1 [[1,2,5,6,7,8,9,10],[3,4]] => 1 [[1,4,5,6,7,8,9,10],[2],[3]] => 2 [[1,2,3,7,8,9,10],[4,5,6]] => 1 [[1,3,6,7,8,9,10],[2,5],[4]] => 2 [[1,5,6,7,8,9,10],[2],[3],[4]] => 3 [[1,2,3,4,9,10],[5,6,7,8]] => 1 [[1,3,4,8,9,10],[2,6,7],[5]] => 2 [[1,2,7,8,9,10],[3,4],[5,6]] => 2 [[1,4,7,8,9,10],[2,6],[3],[5]] => 3 [[1,6,7,8,9,10],[2],[3],[4],[5]] => 4 [[1,3,4,5,10],[2,7,8,9],[6]] => 2 [[1,2,5,9,10],[3,4,8],[6,7]] => 2 [[1,4,5,9,10],[2,7,8],[3],[6]] => 3 [[1,3,8,9,10],[2,5],[4,7],[6]] => 3 [[1,5,8,9,10],[2,7],[3],[4],[6]] => 4 [[1,7,8,9,10],[2],[3],[4],[5],[6]] => 5 [[1,2,5,6],[3,4,9,10],[7,8]] => 2 [[1,4,5,6],[2,8,9,10],[3],[7]] => 3 [[1,2,3,10],[4,5,6],[7,8,9]] => 2 [[1,3,6,10],[2,5,9],[4,8],[7]] => 3 [[1,5,6,10],[2,8,9],[3],[4],[7]] => 4 [[1,2,9,10],[3,4],[5,6],[7,8]] => 3 [[1,4,9,10],[2,6],[3,8],[5],[7]] => 4 [[1,6,9,10],[2,8],[3],[4],[5],[7]] => 5 [[1,8,9,10],[2],[3],[4],[5],[6],[7]] => 6 [[1,3,4],[2,6,7],[5,9,10],[8]] => 3 [[1,2,7],[3,4,10],[5,6],[8,9]] => 3 [[1,4,7],[2,6,10],[3,9],[5],[8]] => 4 [[1,6,7],[2,9,10],[3],[4],[5],[8]] => 5 [[1,3,10],[2,5],[4,7],[6,9],[8]] => 4 [[1,5,10],[2,7],[3,9],[4],[6],[8]] => 5 [[1,7,10],[2,9],[3],[4],[5],[6],[8]] => 6 [[1,9,10],[2],[3],[4],[5],[6],[7],[8]] => 7 [[1,4],[2,6],[3,8],[5,10],[7],[9]] => 5 [[1,6],[2,8],[3,10],[4],[5],[7],[9]] => 6 [[1,8],[2,10],[3],[4],[5],[6],[7],[9]] => 7 [[1,10],[2],[3],[4],[5],[6],[7],[8],[9]] => 8 [[1,9],[2,10],[3],[4],[5],[6],[7],[8]] => 8 [[1,8],[2,9],[3,10],[4],[5],[6],[7]] => 8 [[1,8,10],[2,9],[3],[4],[5],[6],[7]] => 7 [[1,7],[2,8],[3,9],[4,10],[5],[6]] => 8 [[1,7,10],[2,8],[3,9],[4],[5],[6]] => 7 [[1,7,9],[2,8,10],[3],[4],[5],[6]] => 7 [[1,7,9,10],[2,8],[3],[4],[5],[6]] => 6 [[1,6],[2,7],[3,8],[4,9],[5,10]] => 8 [[1,6,10],[2,7],[3,8],[4,9],[5]] => 7 [[1,6,9],[2,7,10],[3,8],[4],[5]] => 7 [[1,6,9,10],[2,7],[3,8],[4],[5]] => 6 [[1,6,8,10],[2,7,9],[3],[4],[5]] => 6 [[1,6,8,9,10],[2,7],[3],[4],[5]] => 5 [[1,5,9],[2,6,10],[3,7],[4,8]] => 7 [[1,5,9,10],[2,6],[3,7],[4,8]] => 6 [[1,5,8],[2,6,9],[3,7,10],[4]] => 7 [[1,5,8,10],[2,6,9],[3,7],[4]] => 6 [[1,5,8,9,10],[2,6],[3,7],[4]] => 5 [[1,5,7,9],[2,6,8,10],[3],[4]] => 6 [[1,5,7,9,10],[2,6,8],[3],[4]] => 5 [[1,5,7,8,9,10],[2,6],[3],[4]] => 4 [[1,4,7,10],[2,5,8],[3,6,9]] => 6 [[1,4,7,9],[2,5,8,10],[3,6]] => 6 [[1,4,7,9,10],[2,5,8],[3,6]] => 5 [[1,4,7,8,9,10],[2,5],[3,6]] => 4 [[1,4,6,8,10],[2,5,7,9],[3]] => 5 [[1,4,6,8,9,10],[2,5,7],[3]] => 4 [[1,4,6,7,8,9,10],[2,5],[3]] => 3 [[1,3,5,7,9,10],[2,4,6,8]] => 4 [[1,3,5,7,8,9,10],[2,4,6]] => 3 [[1,3,5,6,7,8,9,10],[2,4]] => 2 [[1,3],[2,4],[5],[6],[7],[8],[9],[10]] => 8 [[1,4],[2,5],[3,6],[7],[8],[9],[10]] => 8 [[1,2,4],[3,5],[6],[7],[8],[9],[10]] => 7 [[1,5],[2,6],[3,7],[4,8],[9],[10]] => 8 [[1,2,5],[3,6],[4,7],[8],[9],[10]] => 7 [[1,3,5],[2,4,6],[7],[8],[9],[10]] => 7 [[1,2,3,5],[4,6],[7],[8],[9],[10]] => 6 [[1,2,6],[3,7],[4,8],[5,9],[10]] => 7 [[1,3,6],[2,4,7],[5,8],[9],[10]] => 7 [[1,2,3,6],[4,7],[5,8],[9],[10]] => 6 [[1,2,4,6],[3,5,7],[8],[9],[10]] => 6 [[1,2,3,4,6],[5,7],[8],[9],[10]] => 5 [[1,3,7],[2,4,8],[5,9],[6,10]] => 7 [[1,2,3,7],[4,8],[5,9],[6,10]] => 6 [[1,4,7],[2,5,8],[3,6,9],[10]] => 7 [[1,2,4,7],[3,5,8],[6,9],[10]] => 6 [[1,2,3,4,7],[5,8],[6,9],[10]] => 5 [[1,3,5,7],[2,4,6,8],[9],[10]] => 6 [[1,2,3,5,7],[4,6,8],[9],[10]] => 5 [[1,2,3,4,5,7],[6,8],[9],[10]] => 4 [[1,2,5,8],[3,6,9],[4,7,10]] => 6 [[1,3,5,8],[2,4,6,9],[7,10]] => 6 [[1,2,3,5,8],[4,6,9],[7,10]] => 5 [[1,2,3,4,5,8],[6,9],[7,10]] => 4 [[1,2,4,6,8],[3,5,7,9],[10]] => 5 [[1,2,3,4,6,8],[5,7,9],[10]] => 4 [[1,2,3,4,5,6,8],[7,9],[10]] => 3 [[1,2,3,5,7,9],[4,6,8,10]] => 4 [[1,2,3,4,5,7,9],[6,8,10]] => 3 [[1,2,3,4,5,6,7,9],[8,10]] => 2 [[1,2],[3,4],[5,6],[7,9],[8,10]] => 5 [[1,2],[3,4],[5,7],[6,8],[9,10]] => 5 [[1,2],[3,4],[5,7],[6,9],[8,10]] => 5 [[1,2],[3,4],[5,8],[6,9],[7,10]] => 6 [[1,2],[3,5],[4,6],[7,8],[9,10]] => 5 [[1,2],[3,5],[4,6],[7,9],[8,10]] => 6 [[1,2],[3,5],[4,7],[6,8],[9,10]] => 5 [[1,2],[3,5],[4,7],[6,9],[8,10]] => 5 [[1,2],[3,5],[4,8],[6,9],[7,10]] => 6 [[1,2],[3,6],[4,7],[5,8],[9,10]] => 6 [[1,2],[3,6],[4,7],[5,9],[8,10]] => 6 [[1,2],[3,6],[4,8],[5,9],[7,10]] => 6 [[1,2],[3,7],[4,8],[5,9],[6,10]] => 7 [[1,3],[2,4],[5,6],[7,8],[9,10]] => 5 [[1,3],[2,4],[5,6],[7,9],[8,10]] => 6 [[1,3],[2,4],[5,7],[6,8],[9,10]] => 6 [[1,3],[2,4],[5,7],[6,9],[8,10]] => 6 [[1,3],[2,4],[5,8],[6,9],[7,10]] => 7 [[1,3],[2,5],[4,6],[7,8],[9,10]] => 5 [[1,3],[2,5],[4,6],[7,9],[8,10]] => 6 [[1,3],[2,5],[4,7],[6,8],[9,10]] => 5 [[1,3],[2,5],[4,7],[6,9],[8,10]] => 5 [[1,3],[2,5],[4,8],[6,9],[7,10]] => 6 [[1,3],[2,6],[4,7],[5,8],[9,10]] => 6 [[1,3],[2,6],[4,7],[5,9],[8,10]] => 6 [[1,3],[2,6],[4,8],[5,9],[7,10]] => 6 [[1,3],[2,7],[4,8],[5,9],[6,10]] => 7 [[1,4],[2,5],[3,6],[7,8],[9,10]] => 6 [[1,4],[2,5],[3,6],[7,9],[8,10]] => 7 [[1,4],[2,5],[3,7],[6,8],[9,10]] => 6 [[1,4],[2,5],[3,7],[6,9],[8,10]] => 6 [[1,4],[2,5],[3,8],[6,9],[7,10]] => 7 [[1,4],[2,6],[3,7],[5,8],[9,10]] => 6 [[1,4],[2,6],[3,7],[5,9],[8,10]] => 6 [[1,4],[2,6],[3,8],[5,9],[7,10]] => 6 [[1,4],[2,7],[3,8],[5,9],[6,10]] => 7 [[1,5],[2,6],[3,7],[4,8],[9,10]] => 7 [[1,5],[2,6],[3,7],[4,9],[8,10]] => 7 [[1,5],[2,6],[3,8],[4,9],[7,10]] => 7 [[1,5],[2,7],[3,8],[4,9],[6,10]] => 7 [[1,2,3,4,5,6,7,8,10],[9]] => 1 [[1,2,3,4,5,6,10],[7,8,9]] => 1 [[1,2,10],[3],[4],[5],[6],[7],[8],[9]] => 7 [[1,2,4,5,6,7,8,9,10],[3]] => 1 [[1,2,4,6,8,10],[3,5,7,9]] => 4 [[1,2,4,6,8,9,10],[3,5,7]] => 3 [[1,2,4,6,7,8,10],[3,5,9]] => 3 [[1,2,4,6,7,9,10],[3,5,8]] => 3 [[1,2,4,6,7,8,9,10],[3,5]] => 2 [[1,2,4,5,6,8,10],[3,7,9]] => 3 [[1,2,4,5,6,9,10],[3,7,8]] => 2 [[1,2,4,5,7,8,10],[3,6,9]] => 3 [[1,2,4,5,7,9,10],[3,6,8]] => 3 [[1,2,4,5,7,8,9,10],[3,6]] => 2 [[1,2,4,5,6,7,8,10],[3,9]] => 2 [[1,2,4,5,6,7,9,10],[3,8]] => 2 [[1,2,4,5,6,8,9,10],[3,7]] => 2 [[1,2,3,4,6,8,10],[5,7,9]] => 3 [[1,2,3,4,6,9,10],[5,7,8]] => 2 [[1,2,3,4,7,8,10],[5,6,9]] => 2 [[1,2,3,4,7,9,10],[5,6,8]] => 2 [[1,2,3,4,7,8,9,10],[5,6]] => 1 [[1,2,3,5,6,8,10],[4,7,9]] => 3 [[1,2,3,5,6,9,10],[4,7,8]] => 2 [[1,2,3,5,7,8,10],[4,6,9]] => 3 [[1,2,3,5,7,9,10],[4,6,8]] => 3 [[1,2,3,5,7,8,9,10],[4,6]] => 2 [[1,2,3,5,6,7,8,10],[4,9]] => 2 [[1,2,3,5,6,7,9,10],[4,8]] => 2 [[1,2,3,5,6,8,9,10],[4,7]] => 2 [[1,2,3,5,6,7,8,9,10],[4]] => 1 [[1,2,3,4,5,6,8,10],[7,9]] => 2 [[1,2,3,4,5,6,9,10],[7,8]] => 1 [[1,2,3,4,5,7,8,10],[6,9]] => 2 [[1,2,3,4,5,7,9,10],[6,8]] => 2 [[1,2,3,4,5,8,9,10],[6,7]] => 1 [[1,2,3,4,6,7,8,10],[5,9]] => 2 [[1,2,3,4,6,7,9,10],[5,8]] => 2 [[1,2,3,4,6,8,9,10],[5,7]] => 2 [[1,2,3,4,6,7,8,9,10],[5]] => 1 [[1,2,3,4,5,6,7,9,10],[8]] => 1 [[1,2,3,4,5,6,8,9,10],[7]] => 1 [[1,2,3,4,5,7,8,9,10],[6]] => 1 [[1,2,5,6,7,8,9,10],[3],[4]] => 2 [[1,2,6,7,8,9,10],[3],[4],[5]] => 3 [[1,2,7,8,9,10],[3],[4],[5],[6]] => 4 [[1,2,8,9,10],[3],[4],[5],[6],[7]] => 5 [[1,2,9,10],[3],[4],[5],[6],[7],[8]] => 6 [[1,2,4,5,8,9,10],[3,7],[6]] => 2 [[1,2,4,5,6,7],[3,9,10],[8]] => 2 [[1,2,3,4,9,10],[5,6],[7,8]] => 2 [[1,2,5,6,9,10],[3,8],[4],[7]] => 3 [[1,2,4,5,6,7,8,9],[3],[10]] => 2 [[1,2,3,4,7,8],[5,6],[9,10]] => 2 [[1,2,5,6,7,8],[3,10],[4],[9]] => 3 [[1,2,4,5,10],[3,7],[6,9],[8]] => 3 [[1,2,6,7,10],[3,9],[4],[5],[8]] => 4 [[1,2,4,5,8,9],[3,7],[6],[10]] => 3 [[1,2,6,7,8,9],[3],[4],[5],[10]] => 4 [[1,2,5,6],[3,8],[4,10],[7],[9]] => 4 [[1,2,7,8],[3,10],[4],[5],[6],[9]] => 5 [[1,2,4,5],[3,7],[6,9],[8],[10]] => 4 [[1,2,6,7],[3,9],[4],[5],[8],[10]] => 5 [[1,2,8,9],[3],[4],[5],[6],[7],[10]] => 6 [[1,2,3,4,5],[6,7,8,9],[10,11]] => 2 [[1,2,3,4,5],[6,7,8,9],[10],[11]] => 3 [[1,2,3,4,5],[6,7,8],[9,10,11]] => 2 [[1,2,3,4,5],[6,7,8],[9,10],[11]] => 3 [[1,2,3,4,5],[6,7,8],[9],[10],[11]] => 4 [[1,2,3,4,5],[6,7],[8,9],[10,11]] => 3 [[1,2,3,4,5],[6,7],[8,9],[10],[11]] => 4 [[1,2,3,4],[5,6,7,8],[9,10,11]] => 2 [[1,2,3,4],[5,6,7,8],[9,10],[11]] => 3 [[1,2,3,4],[5,6,7,8],[9],[10],[11]] => 4 [[1,2,3,4],[5,6,7],[8,9,10],[11]] => 3 [[1,2,3,4],[5,6,7],[8,9],[10,11]] => 3 [[1,2,3,4],[5,6,7],[8,9],[10],[11]] => 4 [[1,2,3,4],[5,6],[7,8],[9,10],[11]] => 4 [[1,2,3],[4,5,6],[7,8,9],[10,11]] => 3 [[1,2,3],[4,5,6],[7,8,9],[10],[11]] => 4 [[1,2,3],[4,5,6],[7,8],[9,10],[11]] => 4 [[1,2,5,6,11],[3,4,9,10],[7,8]] => 2 [[1,4,5,6,11],[2,8,9,10],[3],[7]] => 3 [[1,2,3,10,11],[4,5,6],[7,8,9]] => 2 [[1,3,6,10,11],[2,5,9],[4,8],[7]] => 3 [[1,5,6,10,11],[2,8,9],[3],[4],[7]] => 4 [[1,2,9,10,11],[3,4],[5,6],[7,8]] => 3 [[1,4,9,10,11],[2,6],[3,8],[5],[7]] => 4 [[1,2,3,7],[4,5,6,11],[8,9,10]] => 2 [[1,3,6,7],[2,5,10,11],[4,9],[8]] => 3 [[1,5,6,7],[2,9,10,11],[3],[4],[8]] => 4 [[1,3,4,11],[2,6,7],[5,9,10],[8]] => 3 [[1,2,7,11],[3,4,10],[5,6],[8,9]] => 3 [[1,4,7,11],[2,6,10],[3,9],[5],[8]] => 4 [[1,3,10,11],[2,5],[4,7],[6,9],[8]] => 4 [[1,2,5],[3,4,8],[6,7,11],[9,10]] => 3 [[1,4,5],[2,7,8],[3,10,11],[6],[9]] => 4 [[1,3,8],[2,5,11],[4,7],[6,10],[9]] => 4 [[1,3,5,7,9,11],[2,4,6,8,10,12]] => 6 [[1,3,5,7,9,10],[2,4,6,8,11,12]] => 5 [[1,3,5,7,8,11],[2,4,6,9,10,12]] => 5 [[1,3,5,7,8,10],[2,4,6,9,11,12]] => 5 [[1,3,5,7,8,9],[2,4,6,10,11,12]] => 4 [[1,3,5,6,9,11],[2,4,7,8,10,12]] => 5 [[1,3,5,6,9,10],[2,4,7,8,11,12]] => 4 [[1,3,5,6,8,11],[2,4,7,9,10,12]] => 5 [[1,3,5,6,8,10],[2,4,7,9,11,12]] => 5 [[1,3,5,6,8,9],[2,4,7,10,11,12]] => 4 [[1,3,5,6,7,11],[2,4,8,9,10,12]] => 4 [[1,3,5,6,7,10],[2,4,8,9,11,12]] => 4 [[1,3,5,6,7,9],[2,4,8,10,11,12]] => 4 [[1,3,5,6,7,8],[2,4,9,10,11,12]] => 3 [[1,3,4,7,9,11],[2,5,6,8,10,12]] => 5 [[1,3,4,7,9,10],[2,5,6,8,11,12]] => 4 [[1,3,4,7,8,11],[2,5,6,9,10,12]] => 4 [[1,3,4,7,8,10],[2,5,6,9,11,12]] => 4 [[1,3,4,7,8,9],[2,5,6,10,11,12]] => 3 [[1,3,4,6,9,11],[2,5,7,8,10,12]] => 5 [[1,3,4,6,9,10],[2,5,7,8,11,12]] => 4 [[1,3,4,6,8,11],[2,5,7,9,10,12]] => 5 [[1,3,4,6,8,10],[2,5,7,9,11,12]] => 5 [[1,3,4,6,8,9],[2,5,7,10,11,12]] => 4 [[1,3,4,6,7,11],[2,5,8,9,10,12]] => 4 [[1,3,4,6,7,10],[2,5,8,9,11,12]] => 4 [[1,3,4,6,7,9],[2,5,8,10,11,12]] => 4 [[1,3,4,6,7,8],[2,5,9,10,11,12]] => 3 [[1,3,4,5,9,11],[2,6,7,8,10,12]] => 4 [[1,3,4,5,9,10],[2,6,7,8,11,12]] => 3 [[1,3,4,5,8,11],[2,6,7,9,10,12]] => 4 [[1,3,4,5,8,10],[2,6,7,9,11,12]] => 4 [[1,3,4,5,8,9],[2,6,7,10,11,12]] => 3 [[1,3,4,5,7,11],[2,6,8,9,10,12]] => 4 [[1,3,4,5,7,10],[2,6,8,9,11,12]] => 4 [[1,3,4,5,7,9],[2,6,8,10,11,12]] => 4 [[1,3,4,5,7,8],[2,6,9,10,11,12]] => 3 [[1,3,4,5,6,11],[2,7,8,9,10,12]] => 3 [[1,3,4,5,6,10],[2,7,8,9,11,12]] => 3 [[1,3,4,5,6,9],[2,7,8,10,11,12]] => 3 [[1,3,4,5,6,8],[2,7,9,10,11,12]] => 3 [[1,3,4,5,6,7],[2,8,9,10,11,12]] => 2 [[1,2,5,7,9,11],[3,4,6,8,10,12]] => 5 [[1,2,5,7,9,10],[3,4,6,8,11,12]] => 4 [[1,2,5,7,8,11],[3,4,6,9,10,12]] => 4 [[1,2,5,7,8,10],[3,4,6,9,11,12]] => 4 [[1,2,5,7,8,9],[3,4,6,10,11,12]] => 3 [[1,2,5,6,9,11],[3,4,7,8,10,12]] => 4 [[1,2,5,6,9,10],[3,4,7,8,11,12]] => 3 [[1,2,5,6,8,11],[3,4,7,9,10,12]] => 4 [[1,2,5,6,8,10],[3,4,7,9,11,12]] => 4 [[1,2,5,6,8,9],[3,4,7,10,11,12]] => 3 [[1,2,5,6,7,11],[3,4,8,9,10,12]] => 3 [[1,2,5,6,7,10],[3,4,8,9,11,12]] => 3 [[1,2,5,6,7,9],[3,4,8,10,11,12]] => 3 [[1,2,5,6,7,8],[3,4,9,10,11,12]] => 2 [[1,2,4,7,9,11],[3,5,6,8,10,12]] => 5 [[1,2,4,7,9,10],[3,5,6,8,11,12]] => 4 [[1,2,4,7,8,11],[3,5,6,9,10,12]] => 4 [[1,2,4,7,8,10],[3,5,6,9,11,12]] => 4 [[1,2,4,7,8,9],[3,5,6,10,11,12]] => 3 [[1,2,4,6,9,11],[3,5,7,8,10,12]] => 5 [[1,2,4,6,9,10],[3,5,7,8,11,12]] => 4 [[1,2,4,6,8,11],[3,5,7,9,10,12]] => 5 [[1,2,4,6,8,10],[3,5,7,9,11,12]] => 5 [[1,2,4,6,8,9],[3,5,7,10,11,12]] => 4 [[1,2,4,6,7,11],[3,5,8,9,10,12]] => 4 [[1,2,4,6,7,10],[3,5,8,9,11,12]] => 4 [[1,2,4,6,7,9],[3,5,8,10,11,12]] => 4 [[1,2,4,6,7,8],[3,5,9,10,11,12]] => 3 [[1,2,4,5,9,11],[3,6,7,8,10,12]] => 4 [[1,2,4,5,9,10],[3,6,7,8,11,12]] => 3 [[1,2,4,5,8,11],[3,6,7,9,10,12]] => 4 [[1,2,4,5,8,10],[3,6,7,9,11,12]] => 4 [[1,2,4,5,8,9],[3,6,7,10,11,12]] => 3 [[1,2,4,5,7,11],[3,6,8,9,10,12]] => 4 [[1,2,4,5,7,10],[3,6,8,9,11,12]] => 4 [[1,2,4,5,7,9],[3,6,8,10,11,12]] => 4 [[1,2,4,5,7,8],[3,6,9,10,11,12]] => 3 [[1,2,4,5,6,11],[3,7,8,9,10,12]] => 3 [[1,2,4,5,6,10],[3,7,8,9,11,12]] => 3 [[1,2,4,5,6,9],[3,7,8,10,11,12]] => 3 [[1,2,4,5,6,8],[3,7,9,10,11,12]] => 3 [[1,2,4,5,6,7],[3,8,9,10,11,12]] => 2 [[1,2,3,7,9,11],[4,5,6,8,10,12]] => 4 [[1,2,3,7,9,10],[4,5,6,8,11,12]] => 3 [[1,2,3,7,8,11],[4,5,6,9,10,12]] => 3 [[1,2,3,7,8,10],[4,5,6,9,11,12]] => 3 [[1,2,3,7,8,9],[4,5,6,10,11,12]] => 2 [[1,2,3,6,9,11],[4,5,7,8,10,12]] => 4 [[1,2,3,6,9,10],[4,5,7,8,11,12]] => 3 [[1,2,3,6,8,11],[4,5,7,9,10,12]] => 4 [[1,2,3,6,8,10],[4,5,7,9,11,12]] => 4 [[1,2,3,6,8,9],[4,5,7,10,11,12]] => 3 [[1,2,3,6,7,11],[4,5,8,9,10,12]] => 3 [[1,2,3,6,7,10],[4,5,8,9,11,12]] => 3 [[1,2,3,6,7,9],[4,5,8,10,11,12]] => 3 [[1,2,3,6,7,8],[4,5,9,10,11,12]] => 2 [[1,2,3,5,9,11],[4,6,7,8,10,12]] => 4 [[1,2,3,5,9,10],[4,6,7,8,11,12]] => 3 [[1,2,3,5,8,11],[4,6,7,9,10,12]] => 4 [[1,2,3,5,8,10],[4,6,7,9,11,12]] => 4 [[1,2,3,5,8,9],[4,6,7,10,11,12]] => 3 [[1,2,3,5,7,11],[4,6,8,9,10,12]] => 4 [[1,2,3,5,7,10],[4,6,8,9,11,12]] => 4 [[1,2,3,5,7,9],[4,6,8,10,11,12]] => 4 [[1,2,3,5,7,8],[4,6,9,10,11,12]] => 3 [[1,2,3,5,6,11],[4,7,8,9,10,12]] => 3 [[1,2,3,5,6,10],[4,7,8,9,11,12]] => 3 [[1,2,3,5,6,9],[4,7,8,10,11,12]] => 3 [[1,2,3,5,6,8],[4,7,9,10,11,12]] => 3 [[1,2,3,5,6,7],[4,8,9,10,11,12]] => 2 [[1,2,3,4,9,11],[5,6,7,8,10,12]] => 3 [[1,2,3,4,9,10],[5,6,7,8,11,12]] => 2 [[1,2,3,4,8,11],[5,6,7,9,10,12]] => 3 [[1,2,3,4,8,10],[5,6,7,9,11,12]] => 3 [[1,2,3,4,8,9],[5,6,7,10,11,12]] => 2 [[1,2,3,4,7,11],[5,6,8,9,10,12]] => 3 [[1,2,3,4,7,10],[5,6,8,9,11,12]] => 3 [[1,2,3,4,7,9],[5,6,8,10,11,12]] => 3 [[1,2,3,4,7,8],[5,6,9,10,11,12]] => 2 [[1,2,3,4,6,11],[5,7,8,9,10,12]] => 3 [[1,2,3,4,6,10],[5,7,8,9,11,12]] => 3 [[1,2,3,4,6,9],[5,7,8,10,11,12]] => 3 [[1,2,3,4,6,8],[5,7,9,10,11,12]] => 3 [[1,2,3,4,6,7],[5,8,9,10,11,12]] => 2 [[1,2,3,4,5,11],[6,7,8,9,10,12]] => 2 [[1,2,3,4,5,10],[6,7,8,9,11,12]] => 2 [[1,2,3,4,5,9],[6,7,8,10,11,12]] => 2 [[1,2,3,4,5,8],[6,7,9,10,11,12]] => 2 [[1,2,3,4,5,7],[6,8,9,10,11,12]] => 2 [[1,2,3,4,5,6],[7,8,9,10,11,12]] => 1 [[1,2,3,4,5,6,7,8,9,10,11,12]] => 0 [[1,2,3,4,5,6],[7,8,9,10],[11,12]] => 2 [[1,2,3,4,5],[6,7,8,9],[10,11,12]] => 2 [[1,2,3,4,5],[6,7,8,9],[10,11],[12]] => 3 [[1,2,3,4,5],[6,7,8,9],[10],[11],[12]] => 4 [[1,2,3,4,5],[6,7,8],[9,10,11],[12]] => 3 [[1,2,3,4,5],[6,7,8],[9,10],[11,12]] => 3 [[1,2,3,4,5],[6,7,8],[9,10],[11],[12]] => 4 [[1,2,3,4,5],[6,7],[8,9],[10,11],[12]] => 4 [[1,2,3,4],[5,6,7,8],[9,10,11],[12]] => 3 [[1,2,3,4],[5,6,7,8],[9,10],[11,12]] => 3 [[1,2,3,4],[5,6,7,8],[9,10],[11],[12]] => 4 [[1,2,3,4],[5,6,7],[8,9,10],[11,12]] => 3 [[1,2,3,4],[5,6,7],[8,9,10],[11],[12]] => 4 [[1,2,3,4],[5,6,7],[8,9],[10,11],[12]] => 4 [[1,2,3],[4,5,6],[7,8,9],[10,11],[12]] => 4 [[1,2,3],[4,5,6],[7,8],[9,10],[11],[12]] => 5 [[1,2],[3,4],[5,6],[7,8],[9,10],[11,12]] => 5 [[1,2,5,6,11,12],[3,4,9,10],[7,8]] => 2 [[1,2,3,7,12],[4,5,6,11],[8,9,10]] => 2 [[1,3,6,7,12],[2,5,10,11],[4,9],[8]] => 3 [[1,5,6,7,12],[2,9,10,11],[3],[4],[8]] => 4 [[1,3,4,11,12],[2,6,7],[5,9,10],[8]] => 3 [[1,2,7,11,12],[3,4,10],[5,6],[8,9]] => 3 [[1,4,7,11,12],[2,6,10],[3,9],[5],[8]] => 4 [[1,3,10,11,12],[2,5],[4,7],[6,9],[8]] => 4 [[1,3,4,8],[2,6,7,12],[5,10,11],[9]] => 3 [[1,2,7,8],[3,4,11,12],[5,6],[9,10]] => 3 [[1,4,7,8],[2,6,11,12],[3,10],[5],[9]] => 4 [[1,2,5,12],[3,4,8],[6,7,11],[9,10]] => 3 [[1,4,5,12],[2,7,8],[3,10,11],[6],[9]] => 4 [[1,3,8,12],[2,5,11],[4,7],[6,10],[9]] => 4 [[1,3,6],[2,5,9],[4,8,12],[7,11],[10]] => 4 [[1,4,9],[2,6,12],[3,8],[5,11],[7],[10]] => 5 [[1,2],[3,4],[5,6],[7,8],[9,11],[10,12]] => 6 [[1,2],[3,4],[5,6],[7,9],[8,10],[11,12]] => 6 [[1,2],[3,4],[5,6],[7,9],[8,11],[10,12]] => 6 [[1,2],[3,4],[5,6],[7,10],[8,11],[9,12]] => 7 [[1,2],[3,4],[5,7],[6,8],[9,10],[11,12]] => 6 [[1,2],[3,4],[5,7],[6,8],[9,11],[10,12]] => 7 [[1,2],[3,4],[5,7],[6,9],[8,10],[11,12]] => 6 [[1,2],[3,4],[5,7],[6,9],[8,11],[10,12]] => 6 [[1,2],[3,4],[5,7],[6,10],[8,11],[9,12]] => 7 [[1,2],[3,4],[5,8],[6,9],[7,10],[11,12]] => 7 [[1,2],[3,4],[5,8],[6,9],[7,11],[10,12]] => 7 [[1,2],[3,4],[5,8],[6,10],[7,11],[9,12]] => 7 [[1,2],[3,4],[5,9],[6,10],[7,11],[8,12]] => 8 [[1,2],[3,5],[4,6],[7,8],[9,10],[11,12]] => 6 [[1,2],[3,5],[4,6],[7,8],[9,11],[10,12]] => 7 [[1,2],[3,5],[4,6],[7,9],[8,10],[11,12]] => 7 [[1,2],[3,5],[4,6],[7,9],[8,11],[10,12]] => 7 [[1,2],[3,5],[4,6],[7,10],[8,11],[9,12]] => 8 [[1,2],[3,5],[4,7],[6,8],[9,10],[11,12]] => 6 [[1,2],[3,5],[4,7],[6,8],[9,11],[10,12]] => 7 [[1,2],[3,5],[4,7],[6,9],[8,10],[11,12]] => 6 [[1,2],[3,5],[4,7],[6,9],[8,11],[10,12]] => 6 [[1,2],[3,5],[4,7],[6,10],[8,11],[9,12]] => 7 [[1,2],[3,5],[4,8],[6,9],[7,10],[11,12]] => 7 [[1,2],[3,5],[4,8],[6,9],[7,11],[10,12]] => 7 [[1,2],[3,5],[4,8],[6,10],[7,11],[9,12]] => 7 [[1,2],[3,5],[4,9],[6,10],[7,11],[8,12]] => 8 [[1,2],[3,6],[4,7],[5,8],[9,10],[11,12]] => 7 [[1,2],[3,6],[4,7],[5,8],[9,11],[10,12]] => 8 [[1,2],[3,6],[4,7],[5,9],[8,10],[11,12]] => 7 [[1,2],[3,6],[4,7],[5,9],[8,11],[10,12]] => 7 [[1,2],[3,6],[4,7],[5,10],[8,11],[9,12]] => 8 [[1,2],[3,6],[4,8],[5,9],[7,10],[11,12]] => 7 [[1,2],[3,6],[4,8],[5,9],[7,11],[10,12]] => 7 [[1,2],[3,6],[4,8],[5,10],[7,11],[9,12]] => 7 [[1,2],[3,6],[4,9],[5,10],[7,11],[8,12]] => 8 [[1,2],[3,7],[4,8],[5,9],[6,10],[11,12]] => 8 [[1,2],[3,7],[4,8],[5,9],[6,11],[10,12]] => 8 [[1,2],[3,7],[4,8],[5,10],[6,11],[9,12]] => 8 [[1,2],[3,7],[4,9],[5,10],[6,11],[8,12]] => 8 [[1,2],[3,8],[4,9],[5,10],[6,11],[7,12]] => 9 [[1,3],[2,4],[5,6],[7,8],[9,10],[11,12]] => 6 [[1,3],[2,4],[5,6],[7,8],[9,11],[10,12]] => 7 [[1,3],[2,4],[5,6],[7,9],[8,10],[11,12]] => 7 [[1,3],[2,4],[5,6],[7,9],[8,11],[10,12]] => 7 [[1,3],[2,4],[5,6],[7,10],[8,11],[9,12]] => 8 [[1,3],[2,4],[5,7],[6,8],[9,10],[11,12]] => 7 [[1,3],[2,4],[5,7],[6,8],[9,11],[10,12]] => 8 [[1,3],[2,4],[5,7],[6,9],[8,10],[11,12]] => 7 [[1,3],[2,4],[5,7],[6,9],[8,11],[10,12]] => 7 [[1,3],[2,4],[5,7],[6,10],[8,11],[9,12]] => 8 [[1,3],[2,4],[5,8],[6,9],[7,10],[11,12]] => 8 [[1,3],[2,4],[5,8],[6,9],[7,11],[10,12]] => 8 [[1,3],[2,4],[5,8],[6,10],[7,11],[9,12]] => 8 [[1,3],[2,4],[5,9],[6,10],[7,11],[8,12]] => 9 [[1,3],[2,5],[4,6],[7,8],[9,10],[11,12]] => 6 [[1,3],[2,5],[4,6],[7,8],[9,11],[10,12]] => 7 [[1,3],[2,5],[4,6],[7,9],[8,10],[11,12]] => 7 [[1,3],[2,5],[4,6],[7,9],[8,11],[10,12]] => 7 [[1,3],[2,5],[4,6],[7,10],[8,11],[9,12]] => 8 [[1,3],[2,5],[4,7],[6,8],[9,10],[11,12]] => 6 [[1,3],[2,5],[4,7],[6,8],[9,11],[10,12]] => 7 [[1,3],[2,5],[4,7],[6,9],[8,10],[11,12]] => 6 [[1,3],[2,5],[4,7],[6,9],[8,11],[10,12]] => 6 [[1,3],[2,5],[4,7],[6,10],[8,11],[9,12]] => 7 [[1,3],[2,5],[4,8],[6,9],[7,10],[11,12]] => 7 [[1,3],[2,5],[4,8],[6,9],[7,11],[10,12]] => 7 [[1,3],[2,5],[4,8],[6,10],[7,11],[9,12]] => 7 [[1,3],[2,5],[4,9],[6,10],[7,11],[8,12]] => 8 [[1,3],[2,6],[4,7],[5,8],[9,10],[11,12]] => 7 [[1,3],[2,6],[4,7],[5,8],[9,11],[10,12]] => 8 [[1,3],[2,6],[4,7],[5,9],[8,10],[11,12]] => 7 [[1,3],[2,6],[4,7],[5,9],[8,11],[10,12]] => 7 [[1,3],[2,6],[4,7],[5,10],[8,11],[9,12]] => 8 [[1,3],[2,6],[4,8],[5,9],[7,10],[11,12]] => 7 [[1,3],[2,6],[4,8],[5,9],[7,11],[10,12]] => 7 [[1,3],[2,6],[4,8],[5,10],[7,11],[9,12]] => 7 [[1,3],[2,6],[4,9],[5,10],[7,11],[8,12]] => 8 [[1,3],[2,7],[4,8],[5,9],[6,10],[11,12]] => 8 [[1,3],[2,7],[4,8],[5,9],[6,11],[10,12]] => 8 [[1,3],[2,7],[4,8],[5,10],[6,11],[9,12]] => 8 [[1,3],[2,7],[4,9],[5,10],[6,11],[8,12]] => 8 [[1,3],[2,8],[4,9],[5,10],[6,11],[7,12]] => 9 [[1,4],[2,5],[3,6],[7,8],[9,10],[11,12]] => 7 [[1,4],[2,5],[3,6],[7,8],[9,11],[10,12]] => 8 [[1,4],[2,5],[3,6],[7,9],[8,10],[11,12]] => 8 [[1,4],[2,5],[3,6],[7,9],[8,11],[10,12]] => 8 [[1,4],[2,5],[3,6],[7,10],[8,11],[9,12]] => 9 [[1,4],[2,5],[3,7],[6,8],[9,10],[11,12]] => 7 [[1,4],[2,5],[3,7],[6,8],[9,11],[10,12]] => 8 [[1,4],[2,5],[3,7],[6,9],[8,10],[11,12]] => 7 [[1,4],[2,5],[3,7],[6,9],[8,11],[10,12]] => 7 [[1,4],[2,5],[3,7],[6,10],[8,11],[9,12]] => 8 [[1,4],[2,5],[3,8],[6,9],[7,10],[11,12]] => 8 [[1,4],[2,5],[3,8],[6,9],[7,11],[10,12]] => 8 [[1,4],[2,5],[3,8],[6,10],[7,11],[9,12]] => 8 [[1,4],[2,5],[3,9],[6,10],[7,11],[8,12]] => 9 [[1,4],[2,6],[3,7],[5,8],[9,10],[11,12]] => 7 [[1,4],[2,6],[3,7],[5,8],[9,11],[10,12]] => 8 [[1,4],[2,6],[3,7],[5,9],[8,10],[11,12]] => 7 [[1,4],[2,6],[3,7],[5,9],[8,11],[10,12]] => 7 [[1,4],[2,6],[3,7],[5,10],[8,11],[9,12]] => 8 [[1,4],[2,6],[3,8],[5,9],[7,10],[11,12]] => 7 [[1,4],[2,6],[3,8],[5,9],[7,11],[10,12]] => 7 [[1,4],[2,6],[3,8],[5,10],[7,11],[9,12]] => 7 [[1,4],[2,6],[3,9],[5,10],[7,11],[8,12]] => 8 [[1,4],[2,7],[3,8],[5,9],[6,10],[11,12]] => 8 [[1,4],[2,7],[3,8],[5,9],[6,11],[10,12]] => 8 [[1,4],[2,7],[3,8],[5,10],[6,11],[9,12]] => 8 [[1,4],[2,7],[3,9],[5,10],[6,11],[8,12]] => 8 [[1,4],[2,8],[3,9],[5,10],[6,11],[7,12]] => 9 [[1,5],[2,6],[3,7],[4,8],[9,10],[11,12]] => 8 [[1,5],[2,6],[3,7],[4,8],[9,11],[10,12]] => 9 [[1,5],[2,6],[3,7],[4,9],[8,10],[11,12]] => 8 [[1,5],[2,6],[3,7],[4,9],[8,11],[10,12]] => 8 [[1,5],[2,6],[3,7],[4,10],[8,11],[9,12]] => 9 [[1,5],[2,6],[3,8],[4,9],[7,10],[11,12]] => 8 [[1,5],[2,6],[3,8],[4,9],[7,11],[10,12]] => 8 [[1,5],[2,6],[3,8],[4,10],[7,11],[9,12]] => 8 [[1,5],[2,6],[3,9],[4,10],[7,11],[8,12]] => 9 [[1,5],[2,7],[3,8],[4,9],[6,10],[11,12]] => 8 [[1,5],[2,7],[3,8],[4,9],[6,11],[10,12]] => 8 [[1,5],[2,7],[3,8],[4,10],[6,11],[9,12]] => 8 [[1,5],[2,7],[3,9],[4,10],[6,11],[8,12]] => 8 [[1,5],[2,8],[3,9],[4,10],[6,11],[7,12]] => 9 [[1,6],[2,7],[3,8],[4,9],[5,10],[11,12]] => 9 [[1,6],[2,7],[3,8],[4,9],[5,11],[10,12]] => 9 [[1,6],[2,7],[3,8],[4,10],[5,11],[9,12]] => 9 [[1,6],[2,7],[3,9],[4,10],[5,11],[8,12]] => 9 [[1,6],[2,8],[3,9],[4,10],[5,11],[7,12]] => 9 [[1,7],[2,8],[3,9],[4,10],[5,11],[6,12]] => 10 [[1,2,4,6,8,10,12],[3,5,7,9,11]] => 5 [[1,2,4,6,8,10,11,12],[3,5,7,9]] => 4 [[1,2,4,6,8,9,10,12],[3,5,7,11]] => 4 [[1,2,4,6,8,9,11,12],[3,5,7,10]] => 4 [[1,2,4,6,8,9,10,11,12],[3,5,7]] => 3 [[1,2,4,6,7,8,10,12],[3,5,9,11]] => 4 [[1,2,4,6,7,8,11,12],[3,5,9,10]] => 3 [[1,2,4,6,7,9,10,12],[3,5,8,11]] => 4 [[1,2,4,6,7,9,11,12],[3,5,8,10]] => 4 [[1,2,4,6,7,9,10,11,12],[3,5,8]] => 3 [[1,2,4,6,7,8,9,10,12],[3,5,11]] => 3 [[1,2,4,6,7,8,9,11,12],[3,5,10]] => 3 [[1,2,4,6,7,8,10,11,12],[3,5,9]] => 3 [[1,2,4,6,7,8,9,10,11,12],[3,5]] => 2 [[1,2,4,5,6,8,10,12],[3,7,9,11]] => 4 [[1,2,4,5,6,8,11,12],[3,7,9,10]] => 3 [[1,2,4,5,6,9,10,12],[3,7,8,11]] => 3 [[1,2,4,5,6,9,11,12],[3,7,8,10]] => 3 [[1,2,4,5,6,9,10,11,12],[3,7,8]] => 2 [[1,2,4,5,7,8,10,12],[3,6,9,11]] => 4 [[1,2,4,5,7,8,11,12],[3,6,9,10]] => 3 [[1,2,4,5,7,9,10,12],[3,6,8,11]] => 4 [[1,2,4,5,7,9,11,12],[3,6,8,10]] => 4 [[1,2,4,5,7,9,10,11,12],[3,6,8]] => 3 [[1,2,4,5,7,8,9,10,12],[3,6,11]] => 3 [[1,2,4,5,7,8,9,11,12],[3,6,10]] => 3 [[1,2,4,5,7,8,10,11,12],[3,6,9]] => 3 [[1,2,4,5,7,8,9,10,11,12],[3,6]] => 2 [[1,2,4,5,6,7,8,10,12],[3,9,11]] => 3 [[1,2,4,5,6,7,8,11,12],[3,9,10]] => 2 [[1,2,4,5,6,7,9,10,12],[3,8,11]] => 3 [[1,2,4,5,6,7,9,11,12],[3,8,10]] => 3 [[1,2,4,5,6,7,10,11,12],[3,8,9]] => 2 [[1,2,4,5,6,8,9,10,12],[3,7,11]] => 3 [[1,2,4,5,6,8,9,11,12],[3,7,10]] => 3 [[1,2,4,5,6,8,10,11,12],[3,7,9]] => 3 [[1,2,4,5,6,8,9,10,11,12],[3,7]] => 2 [[1,2,4,5,6,7,8,9,10,12],[3,11]] => 2 [[1,2,4,5,6,7,8,9,11,12],[3,10]] => 2 [[1,2,4,5,6,7,8,10,11,12],[3,9]] => 2 [[1,2,4,5,6,7,9,10,11,12],[3,8]] => 2 [[1,2,4,5,6,7,8,9,10,11,12],[3]] => 1 [[1,2,3,4,6,8,10,12],[5,7,9,11]] => 4 [[1,2,3,4,6,8,11,12],[5,7,9,10]] => 3 [[1,2,3,4,6,9,10,12],[5,7,8,11]] => 3 [[1,2,3,4,6,9,11,12],[5,7,8,10]] => 3 [[1,2,3,4,6,9,10,11,12],[5,7,8]] => 2 [[1,2,3,4,7,8,10,12],[5,6,9,11]] => 3 [[1,2,3,4,7,8,11,12],[5,6,9,10]] => 2 [[1,2,3,4,7,9,10,12],[5,6,8,11]] => 3 [[1,2,3,4,7,9,11,12],[5,6,8,10]] => 3 [[1,2,3,4,7,9,10,11,12],[5,6,8]] => 2 [[1,2,3,4,7,8,9,10,12],[5,6,11]] => 2 [[1,2,3,4,7,8,9,11,12],[5,6,10]] => 2 [[1,2,3,4,7,8,10,11,12],[5,6,9]] => 2 [[1,2,3,4,7,8,9,10,11,12],[5,6]] => 1 [[1,2,3,5,6,8,10,12],[4,7,9,11]] => 4 [[1,2,3,5,6,8,11,12],[4,7,9,10]] => 3 [[1,2,3,5,6,9,10,12],[4,7,8,11]] => 3 [[1,2,3,5,6,9,11,12],[4,7,8,10]] => 3 [[1,2,3,5,6,9,10,11,12],[4,7,8]] => 2 [[1,2,3,5,7,8,10,12],[4,6,9,11]] => 4 [[1,2,3,5,7,8,11,12],[4,6,9,10]] => 3 [[1,2,3,5,7,9,10,12],[4,6,8,11]] => 4 [[1,2,3,5,7,9,11,12],[4,6,8,10]] => 4 [[1,2,3,5,7,9,10,11,12],[4,6,8]] => 3 [[1,2,3,5,7,8,9,10,12],[4,6,11]] => 3 [[1,2,3,5,7,8,9,11,12],[4,6,10]] => 3 [[1,2,3,5,7,8,10,11,12],[4,6,9]] => 3 [[1,2,3,5,7,8,9,10,11,12],[4,6]] => 2 [[1,2,3,5,6,7,8,10,12],[4,9,11]] => 3 [[1,2,3,5,6,7,8,11,12],[4,9,10]] => 2 [[1,2,3,5,6,7,9,10,12],[4,8,11]] => 3 [[1,2,3,5,6,7,9,11,12],[4,8,10]] => 3 [[1,2,3,5,6,7,10,11,12],[4,8,9]] => 2 [[1,2,3,5,6,8,9,10,12],[4,7,11]] => 3 [[1,2,3,5,6,8,9,11,12],[4,7,10]] => 3 [[1,2,3,5,6,8,10,11,12],[4,7,9]] => 3 [[1,2,3,5,6,8,9,10,11,12],[4,7]] => 2 [[1,2,3,5,6,7,8,9,10,12],[4,11]] => 2 [[1,2,3,5,6,7,8,9,11,12],[4,10]] => 2 [[1,2,3,5,6,7,8,10,11,12],[4,9]] => 2 [[1,2,3,5,6,7,9,10,11,12],[4,8]] => 2 [[1,2,3,5,6,7,8,9,10,11,12],[4]] => 1 [[1,2,3,4,5,6,8,10,12],[7,9,11]] => 3 [[1,2,3,4,5,6,8,11,12],[7,9,10]] => 2 [[1,2,3,4,5,6,9,10,12],[7,8,11]] => 2 [[1,2,3,4,5,6,9,11,12],[7,8,10]] => 2 [[1,2,3,4,5,6,10,11,12],[7,8,9]] => 1 [[1,2,3,4,5,7,8,10,12],[6,9,11]] => 3 [[1,2,3,4,5,7,8,11,12],[6,9,10]] => 2 [[1,2,3,4,5,7,9,10,12],[6,8,11]] => 3 [[1,2,3,4,5,7,9,11,12],[6,8,10]] => 3 [[1,2,3,4,5,7,10,11,12],[6,8,9]] => 2 [[1,2,3,4,5,8,9,10,12],[6,7,11]] => 2 [[1,2,3,4,5,8,9,11,12],[6,7,10]] => 2 [[1,2,3,4,5,8,10,11,12],[6,7,9]] => 2 [[1,2,3,4,5,8,9,10,11,12],[6,7]] => 1 [[1,2,3,4,6,7,8,10,12],[5,9,11]] => 3 [[1,2,3,4,6,7,8,11,12],[5,9,10]] => 2 [[1,2,3,4,6,7,9,10,12],[5,8,11]] => 3 [[1,2,3,4,6,7,9,11,12],[5,8,10]] => 3 [[1,2,3,4,6,7,10,11,12],[5,8,9]] => 2 [[1,2,3,4,6,8,9,10,12],[5,7,11]] => 3 [[1,2,3,4,6,8,9,11,12],[5,7,10]] => 3 [[1,2,3,4,6,8,10,11,12],[5,7,9]] => 3 [[1,2,3,4,6,8,9,10,11,12],[5,7]] => 2 [[1,2,3,4,6,7,8,9,10,12],[5,11]] => 2 [[1,2,3,4,6,7,8,9,11,12],[5,10]] => 2 [[1,2,3,4,6,7,8,10,11,12],[5,9]] => 2 [[1,2,3,4,6,7,9,10,11,12],[5,8]] => 2 [[1,2,3,4,6,7,8,9,10,11,12],[5]] => 1 [[1,2,3,4,5,6,7,8,10,12],[9,11]] => 2 [[1,2,3,4,5,6,7,8,11,12],[9,10]] => 1 [[1,2,3,4,5,6,7,9,10,12],[8,11]] => 2 [[1,2,3,4,5,6,7,9,11,12],[8,10]] => 2 [[1,2,3,4,5,6,7,10,11,12],[8,9]] => 1 [[1,2,3,4,5,6,8,9,10,12],[7,11]] => 2 [[1,2,3,4,5,6,8,9,11,12],[7,10]] => 2 [[1,2,3,4,5,6,8,10,11,12],[7,9]] => 2 [[1,2,3,4,5,6,9,10,11,12],[7,8]] => 1 [[1,2,3,4,5,7,8,9,10,12],[6,11]] => 2 [[1,2,3,4,5,7,8,9,11,12],[6,10]] => 2 [[1,2,3,4,5,7,8,10,11,12],[6,9]] => 2 [[1,2,3,4,5,7,9,10,11,12],[6,8]] => 2 [[1,2,3,4,5,7,8,9,10,11,12],[6]] => 1 [[1,2,3,4,5,6,7,8,9,10,12],[11]] => 1 [[1,2,3,4,5,6,7,8,9,11,12],[10]] => 1 [[1,2,3,4,5,6,7,8,10,11,12],[9]] => 1 [[1,2,3,4,5,6,7,9,10,11,12],[8]] => 1 [[1,2,3,4,5,6,8,9,10,11,12],[7]] => 1 [[1,2,3,4,5],[6,7,8,9],[10,11,12],[13]] => 3 [[1,2,3,4,5],[6,7,8,9],[10,11],[12,13]] => 3 [[1,2,3,4,5],[6,7,8,9],[10,11],[12],[13]] => 4 [[1,2,3,4,5],[6,7,8],[9,10,11],[12,13]] => 3 [[1,2,3,4,5],[6,7,8],[9,10,11],[12],[13]] => 4 [[1,2,3,4,5],[6,7,8],[9,10],[11,12],[13]] => 4 [[1,2,3,4],[5,6,7,8],[9,10,11],[12,13]] => 3 [[1,2,3,4],[5,6,7,8],[9,10,11],[12],[13]] => 4 [[1,2,3,4],[5,6,7,8],[9,10],[11,12],[13]] => 4 [[1,2,3,4],[5,6,7],[8,9,10],[11,12],[13]] => 4 [[1,3,4,8,13],[2,6,7,12],[5,10,11],[9]] => 3 [[1,2,7,8,13],[3,4,11,12],[5,6],[9,10]] => 3 [[1,4,7,8,13],[2,6,11,12],[3,10],[5],[9]] => 4 [[1,2,5,12,13],[3,4,8],[6,7,11],[9,10]] => 3 [[1,4,5,12,13],[2,7,8],[3,10,11],[6],[9]] => 4 [[1,3,8,12,13],[2,5,11],[4,7],[6,10],[9]] => 4 [[1,2,5,9],[3,4,8,13],[6,7,12],[10,11]] => 3 [[1,4,5,9],[2,7,8,13],[3,11,12],[6],[10]] => 4 [[1,3,8,9],[2,5,12,13],[4,7],[6,11],[10]] => 4 [[1,3,6,13],[2,5,9],[4,8,12],[7,11],[10]] => 4 [[1,3,4,6,7,8,9],[2,5,10,11,12,13,14]] => 3 [[1,3,4,5,7,8,10],[2,6,9,11,12,13,14]] => 4 [[1,3,4,5,7,8,9],[2,6,10,11,12,13,14]] => 3 [[1,3,4,5,6,9,10],[2,7,8,11,12,13,14]] => 3 [[1,3,4,5,6,8,11],[2,7,9,10,12,13,14]] => 4 [[1,3,4,5,6,8,10],[2,7,9,11,12,13,14]] => 4 [[1,3,4,5,6,8,9],[2,7,10,11,12,13,14]] => 3 [[1,3,4,5,6,7,12],[2,8,9,10,11,13,14]] => 3 [[1,3,4,5,6,7,11],[2,8,9,10,12,13,14]] => 3 [[1,3,4,5,6,7,10],[2,8,9,11,12,13,14]] => 3 [[1,3,4,5,6,7,9],[2,8,10,11,12,13,14]] => 3 [[1,3,4,5,6,7,8],[2,9,10,11,12,13,14]] => 2 [[1,2,5,6,7,8,9],[3,4,10,11,12,13,14]] => 2 [[1,2,4,5,6,7,13],[3,8,9,10,11,12,14]] => 3 [[1,2,3,5,6,8,13],[4,7,9,10,11,12,14]] => 4 [[1,2,3,5,6,7,13],[4,8,9,10,11,12,14]] => 3 [[1,2,3,4,7,8,13],[5,6,9,10,11,12,14]] => 3 [[1,2,3,4,6,9,13],[5,7,8,10,11,12,14]] => 4 [[1,2,3,4,6,8,13],[5,7,9,10,11,12,14]] => 4 [[1,2,3,4,6,7,13],[5,8,9,10,11,12,14]] => 3 [[1,2,3,4,5,11,12],[6,7,8,9,10,13,14]] => 2 [[1,2,3,4,5,10,13],[6,7,8,9,11,12,14]] => 3 [[1,2,3,4,5,9,13],[6,7,8,10,11,12,14]] => 3 [[1,2,3,4,5,8,13],[6,7,9,10,11,12,14]] => 3 [[1,2,3,4,5,7,13],[6,8,9,10,11,12,14]] => 3 [[1,2,3,4,5,6,13],[7,8,9,10,11,12,14]] => 2 [[1,2,3,4,5],[6,7,8,9],[10,11,12],[13,14]] => 3 [[1,2,3,4,5],[6,7,8,9],[10,11,12],[13],[14]] => 4 [[1,2,3,4,5],[6,7,8,9],[10,11],[12,13],[14]] => 4 [[1,2,3,4,5],[6,7,8],[9,10,11],[12,13],[14]] => 4 [[1,2,3,4],[5,6,7,8],[9,10,11],[12,13],[14]] => 4 [[1,2,5,9,14],[3,4,8,13],[6,7,12],[10,11]] => 3 [[1,4,5,9,14],[2,7,8,13],[3,11,12],[6],[10]] => 4 [[1,3,8,9,14],[2,5,12,13],[4,7],[6,11],[10]] => 4 [[1,3,6,13,14],[2,5,9],[4,8,12],[7,11],[10]] => 4 [[1,3,6,10],[2,5,9,14],[4,8,13],[7,12],[11]] => 4 [[1,2,3,4,5],[6,7,8,9],[10,11,12],[13,14],[15]] => 4 [[1,3,6,10,15],[2,5,9,14],[4,8,13],[7,12],[11]] => 4 [[1,3,4,5,6,8,9,10],[2,7,11,12,13,14,15,16]] => 3 [[1,3,4,5,6,7,9,11],[2,8,10,12,13,14,15,16]] => 4 [[1,3,4,5,6,7,9,10],[2,8,11,12,13,14,15,16]] => 3 [[1,3,4,5,6,7,8,12],[2,9,10,11,13,14,15,16]] => 3 [[1,3,4,5,6,7,8,11],[2,9,10,12,13,14,15,16]] => 3 [[1,3,4,5,6,7,8,10],[2,9,11,12,13,14,15,16]] => 3 [[1,3,4,5,6,7,8,9],[2,10,11,12,13,14,15,16]] => 2 [[1,2,3,4,6,7,8,15],[5,9,10,11,12,13,14,16]] => 3 [[1,2,3,4,5,7,9,15],[6,8,10,11,12,13,14,16]] => 4 [[1,2,3,4,5,7,8,15],[6,9,10,11,12,13,14,16]] => 3 [[1,2,3,4,5,6,10,15],[7,8,9,11,12,13,14,16]] => 3 [[1,2,3,4,5,6,9,15],[7,8,10,11,12,13,14,16]] => 3 [[1,2,3,4,5,6,8,15],[7,9,10,11,12,13,14,16]] => 3 [[1,2,3,4,5,6,7,15],[8,9,10,11,12,13,14,16]] => 2 [[1,2,3,4,5,6,7,8,17],[9,10,11,12,13,14,15,16,18]] => 2 [[1,3,4,5,6,7,8,9,10],[2,11,12,13,14,15,16,17,18]] => 2 [[1,2,3,4,5,6,7,9,17],[8,10,11,12,13,14,15,16,18]] => 3 [[1,3,4,5,6,7,8,9,11],[2,10,12,13,14,15,16,17,18]] => 3 [[1,2,3,4,5,6,7,10,17],[8,9,11,12,13,14,15,16,18]] => 3 [[1,2,3,4,5,6,8,9,17],[7,10,11,12,13,14,15,16,18]] => 3 [[1,3,4,5,6,7,8,9,12],[2,10,11,13,14,15,16,17,18]] => 3 [[1,3,4,5,6,7,8,10,11],[2,9,12,13,14,15,16,17,18]] => 3 [[1,2,3,4,5,6,7,8,9,19],[10,11,12,13,14,15,16,17,18,20]] => 2 [[1,3,4,5,6,7,8,9,10,11],[2,12,13,14,15,16,17,18,19,20]] => 2 [[1,2,3,4,5,6,7,8,10,19],[9,11,12,13,14,15,16,17,18,20]] => 3 [[1,3,4,5,6,7,8,9,10,12],[2,11,13,14,15,16,17,18,19,20]] => 3 [[1,2,3,4,5,6,7,8,9,10,21],[11,12,13,14,15,16,17,18,19,20,22]] => 2 [[1,3,4,5,6,7,8,9,10,11,12],[2,13,14,15,16,17,18,19,20,21,22]] => 2 ----------------------------------------------------------------------------- Created: Jul 29, 2013 at 04:29 by Jessica Striker ----------------------------------------------------------------------------- Last Updated: Dec 19, 2017 at 18:29 by Martin Rubey