Identifier
- St000166: Ordered trees ⟶ ℤ (values match St000094The depth of an ordered tree.)
Values
=>
Cc0021;cc-rep
[[]]=>1
[[],[]]=>1
[[[]]]=>2
[[],[],[]]=>1
[[],[[]]]=>2
[[[]],[]]=>2
[[[],[]]]=>2
[[[[]]]]=>3
[[],[],[],[]]=>1
[[],[],[[]]]=>2
[[],[[]],[]]=>2
[[],[[],[]]]=>2
[[],[[[]]]]=>3
[[[]],[],[]]=>2
[[[]],[[]]]=>2
[[[],[]],[]]=>2
[[[[]]],[]]=>3
[[[],[],[]]]=>2
[[[],[[]]]]=>3
[[[[]],[]]]=>3
[[[[],[]]]]=>3
[[[[[]]]]]=>4
[[],[],[],[],[]]=>1
[[],[],[],[[]]]=>2
[[],[],[[]],[]]=>2
[[],[],[[],[]]]=>2
[[],[],[[[]]]]=>3
[[],[[]],[],[]]=>2
[[],[[]],[[]]]=>2
[[],[[],[]],[]]=>2
[[],[[[]]],[]]=>3
[[],[[],[],[]]]=>2
[[],[[],[[]]]]=>3
[[],[[[]],[]]]=>3
[[],[[[],[]]]]=>3
[[],[[[[]]]]]=>4
[[[]],[],[],[]]=>2
[[[]],[],[[]]]=>2
[[[]],[[]],[]]=>2
[[[]],[[],[]]]=>2
[[[]],[[[]]]]=>3
[[[],[]],[],[]]=>2
[[[[]]],[],[]]=>3
[[[],[]],[[]]]=>2
[[[[]]],[[]]]=>3
[[[],[],[]],[]]=>2
[[[],[[]]],[]]=>3
[[[[]],[]],[]]=>3
[[[[],[]]],[]]=>3
[[[[[]]]],[]]=>4
[[[],[],[],[]]]=>2
[[[],[],[[]]]]=>3
[[[],[[]],[]]]=>3
[[[],[[],[]]]]=>3
[[[],[[[]]]]]=>4
[[[[]],[],[]]]=>3
[[[[]],[[]]]]=>3
[[[[],[]],[]]]=>3
[[[[[]]],[]]]=>4
[[[[],[],[]]]]=>3
[[[[],[[]]]]]=>4
[[[[[]],[]]]]=>4
[[[[[],[]]]]]=>4
[[[[[[]]]]]]=>5
[[],[],[],[],[],[]]=>1
[[],[],[],[],[[]]]=>2
[[],[],[],[[]],[]]=>2
[[],[],[],[[],[]]]=>2
[[],[],[],[[[]]]]=>3
[[],[],[[]],[],[]]=>2
[[],[],[[]],[[]]]=>2
[[],[],[[],[]],[]]=>2
[[],[],[[[]]],[]]=>3
[[],[],[[],[],[]]]=>2
[[],[],[[],[[]]]]=>3
[[],[],[[[]],[]]]=>3
[[],[],[[[],[]]]]=>3
[[],[],[[[[]]]]]=>4
[[],[[]],[],[],[]]=>2
[[],[[]],[],[[]]]=>2
[[],[[]],[[]],[]]=>2
[[],[[]],[[],[]]]=>2
[[],[[]],[[[]]]]=>3
[[],[[],[]],[],[]]=>2
[[],[[[]]],[],[]]=>3
[[],[[],[]],[[]]]=>2
[[],[[[]]],[[]]]=>3
[[],[[],[],[]],[]]=>2
[[],[[],[[]]],[]]=>3
[[],[[[]],[]],[]]=>3
[[],[[[],[]]],[]]=>3
[[],[[[[]]]],[]]=>4
[[],[[],[],[],[]]]=>2
[[],[[],[],[[]]]]=>3
[[],[[],[[]],[]]]=>3
[[],[[],[[],[]]]]=>3
[[],[[],[[[]]]]]=>4
[[],[[[]],[],[]]]=>3
[[],[[[]],[[]]]]=>3
[[],[[[],[]],[]]]=>3
[[],[[[[]]],[]]]=>4
[[],[[[],[],[]]]]=>3
[[],[[[],[[]]]]]=>4
[[],[[[[]],[]]]]=>4
[[],[[[[],[]]]]]=>4
[[],[[[[[]]]]]]=>5
[[[]],[],[],[],[]]=>2
[[[]],[],[],[[]]]=>2
[[[]],[],[[]],[]]=>2
[[[]],[],[[],[]]]=>2
[[[]],[],[[[]]]]=>3
[[[]],[[]],[],[]]=>2
[[[]],[[]],[[]]]=>2
[[[]],[[],[]],[]]=>2
[[[]],[[[]]],[]]=>3
[[[]],[[],[],[]]]=>2
[[[]],[[],[[]]]]=>3
[[[]],[[[]],[]]]=>3
[[[]],[[[],[]]]]=>3
[[[]],[[[[]]]]]=>4
[[[],[]],[],[],[]]=>2
[[[[]]],[],[],[]]=>3
[[[],[]],[],[[]]]=>2
[[[[]]],[],[[]]]=>3
[[[],[]],[[]],[]]=>2
[[[[]]],[[]],[]]=>3
[[[],[]],[[],[]]]=>2
[[[],[]],[[[]]]]=>3
[[[[]]],[[],[]]]=>3
[[[[]]],[[[]]]]=>3
[[[],[],[]],[],[]]=>2
[[[],[[]]],[],[]]=>3
[[[[]],[]],[],[]]=>3
[[[[],[]]],[],[]]=>3
[[[[[]]]],[],[]]=>4
[[[],[],[]],[[]]]=>2
[[[],[[]]],[[]]]=>3
[[[[]],[]],[[]]]=>3
[[[[],[]]],[[]]]=>3
[[[[[]]]],[[]]]=>4
[[[],[],[],[]],[]]=>2
[[[],[],[[]]],[]]=>3
[[[],[[]],[]],[]]=>3
[[[],[[],[]]],[]]=>3
[[[],[[[]]]],[]]=>4
[[[[]],[],[]],[]]=>3
[[[[]],[[]]],[]]=>3
[[[[],[]],[]],[]]=>3
[[[[[]]],[]],[]]=>4
[[[[],[],[]]],[]]=>3
[[[[],[[]]]],[]]=>4
[[[[[]],[]]],[]]=>4
[[[[[],[]]]],[]]=>4
[[[[[[]]]]],[]]=>5
[[[],[],[],[],[]]]=>2
[[[],[],[],[[]]]]=>3
[[[],[],[[]],[]]]=>3
[[[],[],[[],[]]]]=>3
[[[],[],[[[]]]]]=>4
[[[],[[]],[],[]]]=>3
[[[],[[]],[[]]]]=>3
[[[],[[],[]],[]]]=>3
[[[],[[[]]],[]]]=>4
[[[],[[],[],[]]]]=>3
[[[],[[],[[]]]]]=>4
[[[],[[[]],[]]]]=>4
[[[],[[[],[]]]]]=>4
[[[],[[[[]]]]]]=>5
[[[[]],[],[],[]]]=>3
[[[[]],[],[[]]]]=>3
[[[[]],[[]],[]]]=>3
[[[[]],[[],[]]]]=>3
[[[[]],[[[]]]]]=>4
[[[[],[]],[],[]]]=>3
[[[[[]]],[],[]]]=>4
[[[[],[]],[[]]]]=>3
[[[[[]]],[[]]]]=>4
[[[[],[],[]],[]]]=>3
[[[[],[[]]],[]]]=>4
[[[[[]],[]],[]]]=>4
[[[[[],[]]],[]]]=>4
[[[[[[]]]],[]]]=>5
[[[[],[],[],[]]]]=>3
[[[[],[],[[]]]]]=>4
[[[[],[[]],[]]]]=>4
[[[[],[[],[]]]]]=>4
[[[[],[[[]]]]]]=>5
[[[[[]],[],[]]]]=>4
[[[[[]],[[]]]]]=>4
[[[[[],[]],[]]]]=>4
[[[[[[]]],[]]]]=>5
[[[[[],[],[]]]]]=>4
[[[[[],[[]]]]]]=>5
[[[[[[]],[]]]]]=>5
[[[[[[],[]]]]]]=>5
[[[[[[[]]]]]]]=>6
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The depth minus 1 of an ordered tree.
The ordered trees of size $n$ are bijection with the Dyck paths of size $n-1$, and this statistic then corresponds to St000013The height of a Dyck path..
The ordered trees of size $n$ are bijection with the Dyck paths of size $n-1$, and this statistic then corresponds to St000013The height of a Dyck path..
Code
def statistic(t): return t.depth()-1
Created
Nov 08, 2013 at 21:04 by Viviane Pons
Updated
Feb 17, 2015 at 21:18 by Martin Rubey
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!