Identifier
- St000168: Ordered trees ⟶ ℤ
Values
=>
Cc0021;cc-rep
[[]]=>0
[[],[]]=>0
[[[]]]=>1
[[],[],[]]=>0
[[],[[]]]=>1
[[[]],[]]=>1
[[[],[]]]=>1
[[[[]]]]=>2
[[],[],[],[]]=>0
[[],[],[[]]]=>1
[[],[[]],[]]=>1
[[],[[],[]]]=>1
[[],[[[]]]]=>2
[[[]],[],[]]=>1
[[[]],[[]]]=>2
[[[],[]],[]]=>1
[[[[]]],[]]=>2
[[[],[],[]]]=>1
[[[],[[]]]]=>2
[[[[]],[]]]=>2
[[[[],[]]]]=>2
[[[[[]]]]]=>3
[[],[],[],[],[]]=>0
[[],[],[],[[]]]=>1
[[],[],[[]],[]]=>1
[[],[],[[],[]]]=>1
[[],[],[[[]]]]=>2
[[],[[]],[],[]]=>1
[[],[[]],[[]]]=>2
[[],[[],[]],[]]=>1
[[],[[[]]],[]]=>2
[[],[[],[],[]]]=>1
[[],[[],[[]]]]=>2
[[],[[[]],[]]]=>2
[[],[[[],[]]]]=>2
[[],[[[[]]]]]=>3
[[[]],[],[],[]]=>1
[[[]],[],[[]]]=>2
[[[]],[[]],[]]=>2
[[[]],[[],[]]]=>2
[[[]],[[[]]]]=>3
[[[],[]],[],[]]=>1
[[[[]]],[],[]]=>2
[[[],[]],[[]]]=>2
[[[[]]],[[]]]=>3
[[[],[],[]],[]]=>1
[[[],[[]]],[]]=>2
[[[[]],[]],[]]=>2
[[[[],[]]],[]]=>2
[[[[[]]]],[]]=>3
[[[],[],[],[]]]=>1
[[[],[],[[]]]]=>2
[[[],[[]],[]]]=>2
[[[],[[],[]]]]=>2
[[[],[[[]]]]]=>3
[[[[]],[],[]]]=>2
[[[[]],[[]]]]=>3
[[[[],[]],[]]]=>2
[[[[[]]],[]]]=>3
[[[[],[],[]]]]=>2
[[[[],[[]]]]]=>3
[[[[[]],[]]]]=>3
[[[[[],[]]]]]=>3
[[[[[[]]]]]]=>4
[[],[],[],[],[],[]]=>0
[[],[],[],[],[[]]]=>1
[[],[],[],[[]],[]]=>1
[[],[],[],[[],[]]]=>1
[[],[],[],[[[]]]]=>2
[[],[],[[]],[],[]]=>1
[[],[],[[]],[[]]]=>2
[[],[],[[],[]],[]]=>1
[[],[],[[[]]],[]]=>2
[[],[],[[],[],[]]]=>1
[[],[],[[],[[]]]]=>2
[[],[],[[[]],[]]]=>2
[[],[],[[[],[]]]]=>2
[[],[],[[[[]]]]]=>3
[[],[[]],[],[],[]]=>1
[[],[[]],[],[[]]]=>2
[[],[[]],[[]],[]]=>2
[[],[[]],[[],[]]]=>2
[[],[[]],[[[]]]]=>3
[[],[[],[]],[],[]]=>1
[[],[[[]]],[],[]]=>2
[[],[[],[]],[[]]]=>2
[[],[[[]]],[[]]]=>3
[[],[[],[],[]],[]]=>1
[[],[[],[[]]],[]]=>2
[[],[[[]],[]],[]]=>2
[[],[[[],[]]],[]]=>2
[[],[[[[]]]],[]]=>3
[[],[[],[],[],[]]]=>1
[[],[[],[],[[]]]]=>2
[[],[[],[[]],[]]]=>2
[[],[[],[[],[]]]]=>2
[[],[[],[[[]]]]]=>3
[[],[[[]],[],[]]]=>2
[[],[[[]],[[]]]]=>3
[[],[[[],[]],[]]]=>2
[[],[[[[]]],[]]]=>3
[[],[[[],[],[]]]]=>2
[[],[[[],[[]]]]]=>3
[[],[[[[]],[]]]]=>3
[[],[[[[],[]]]]]=>3
[[],[[[[[]]]]]]=>4
[[[]],[],[],[],[]]=>1
[[[]],[],[],[[]]]=>2
[[[]],[],[[]],[]]=>2
[[[]],[],[[],[]]]=>2
[[[]],[],[[[]]]]=>3
[[[]],[[]],[],[]]=>2
[[[]],[[]],[[]]]=>3
[[[]],[[],[]],[]]=>2
[[[]],[[[]]],[]]=>3
[[[]],[[],[],[]]]=>2
[[[]],[[],[[]]]]=>3
[[[]],[[[]],[]]]=>3
[[[]],[[[],[]]]]=>3
[[[]],[[[[]]]]]=>4
[[[],[]],[],[],[]]=>1
[[[[]]],[],[],[]]=>2
[[[],[]],[],[[]]]=>2
[[[[]]],[],[[]]]=>3
[[[],[]],[[]],[]]=>2
[[[[]]],[[]],[]]=>3
[[[],[]],[[],[]]]=>2
[[[],[]],[[[]]]]=>3
[[[[]]],[[],[]]]=>3
[[[[]]],[[[]]]]=>4
[[[],[],[]],[],[]]=>1
[[[],[[]]],[],[]]=>2
[[[[]],[]],[],[]]=>2
[[[[],[]]],[],[]]=>2
[[[[[]]]],[],[]]=>3
[[[],[],[]],[[]]]=>2
[[[],[[]]],[[]]]=>3
[[[[]],[]],[[]]]=>3
[[[[],[]]],[[]]]=>3
[[[[[]]]],[[]]]=>4
[[[],[],[],[]],[]]=>1
[[[],[],[[]]],[]]=>2
[[[],[[]],[]],[]]=>2
[[[],[[],[]]],[]]=>2
[[[],[[[]]]],[]]=>3
[[[[]],[],[]],[]]=>2
[[[[]],[[]]],[]]=>3
[[[[],[]],[]],[]]=>2
[[[[[]]],[]],[]]=>3
[[[[],[],[]]],[]]=>2
[[[[],[[]]]],[]]=>3
[[[[[]],[]]],[]]=>3
[[[[[],[]]]],[]]=>3
[[[[[[]]]]],[]]=>4
[[[],[],[],[],[]]]=>1
[[[],[],[],[[]]]]=>2
[[[],[],[[]],[]]]=>2
[[[],[],[[],[]]]]=>2
[[[],[],[[[]]]]]=>3
[[[],[[]],[],[]]]=>2
[[[],[[]],[[]]]]=>3
[[[],[[],[]],[]]]=>2
[[[],[[[]]],[]]]=>3
[[[],[[],[],[]]]]=>2
[[[],[[],[[]]]]]=>3
[[[],[[[]],[]]]]=>3
[[[],[[[],[]]]]]=>3
[[[],[[[[]]]]]]=>4
[[[[]],[],[],[]]]=>2
[[[[]],[],[[]]]]=>3
[[[[]],[[]],[]]]=>3
[[[[]],[[],[]]]]=>3
[[[[]],[[[]]]]]=>4
[[[[],[]],[],[]]]=>2
[[[[[]]],[],[]]]=>3
[[[[],[]],[[]]]]=>3
[[[[[]]],[[]]]]=>4
[[[[],[],[]],[]]]=>2
[[[[],[[]]],[]]]=>3
[[[[[]],[]],[]]]=>3
[[[[[],[]]],[]]]=>3
[[[[[[]]]],[]]]=>4
[[[[],[],[],[]]]]=>2
[[[[],[],[[]]]]]=>3
[[[[],[[]],[]]]]=>3
[[[[],[[],[]]]]]=>3
[[[[],[[[]]]]]]=>4
[[[[[]],[],[]]]]=>3
[[[[[]],[[]]]]]=>4
[[[[[],[]],[]]]]=>3
[[[[[[]]],[]]]]=>4
[[[[[],[],[]]]]]=>3
[[[[[],[[]]]]]]=>4
[[[[[[]],[]]]]]=>4
[[[[[[],[]]]]]]=>4
[[[[[[[]]]]]]]=>5
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of internal nodes of an ordered tree.
A node is internal if it is neither the root nor a leaf.
A node is internal if it is neither the root nor a leaf.
Code
def statistic(t): stack = [c for c in t] ni = 0 while len(stack)!=0: tree = stack.pop() if len(tree)!=0: ni+=1 stack.extend(tree) return ni
Created
Nov 09, 2013 at 01:04 by Viviane Pons
Updated
Apr 01, 2015 at 21:27 by Martin Rubey
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!