edit this statistic or download as text // json
Identifier
Values
=>
Cc0002;cc-rep
[]=>0 [1]=>0 [2]=>0 [1,1]=>1 [3]=>0 [2,1]=>1 [1,1,1]=>3 [4]=>0 [3,1]=>1 [2,2]=>2 [2,1,1]=>3 [1,1,1,1]=>6 [5]=>0 [4,1]=>1 [3,2]=>2 [3,1,1]=>3 [2,2,1]=>4 [2,1,1,1]=>6 [1,1,1,1,1]=>10 [6]=>0 [5,1]=>1 [4,2]=>2 [4,1,1]=>3 [3,3]=>3 [3,2,1]=>4 [3,1,1,1]=>6 [2,2,2]=>6 [2,2,1,1]=>7 [2,1,1,1,1]=>10 [1,1,1,1,1,1]=>15 [7]=>0 [6,1]=>1 [5,2]=>2 [5,1,1]=>3 [4,3]=>3 [4,2,1]=>4 [4,1,1,1]=>6 [3,3,1]=>5 [3,2,2]=>6 [3,2,1,1]=>7 [3,1,1,1,1]=>10 [2,2,2,1]=>9 [2,2,1,1,1]=>11 [2,1,1,1,1,1]=>15 [1,1,1,1,1,1,1]=>21 [8]=>0 [7,1]=>1 [6,2]=>2 [6,1,1]=>3 [5,3]=>3 [5,2,1]=>4 [5,1,1,1]=>6 [4,4]=>4 [4,3,1]=>5 [4,2,2]=>6 [4,2,1,1]=>7 [4,1,1,1,1]=>10 [3,3,2]=>7 [3,3,1,1]=>8 [3,2,2,1]=>9 [3,2,1,1,1]=>11 [3,1,1,1,1,1]=>15 [2,2,2,2]=>12 [2,2,2,1,1]=>13 [2,2,1,1,1,1]=>16 [2,1,1,1,1,1,1]=>21 [1,1,1,1,1,1,1,1]=>28 [9]=>0 [8,1]=>1 [7,2]=>2 [7,1,1]=>3 [6,3]=>3 [6,2,1]=>4 [6,1,1,1]=>6 [5,4]=>4 [5,3,1]=>5 [5,2,2]=>6 [5,2,1,1]=>7 [5,1,1,1,1]=>10 [4,4,1]=>6 [4,3,2]=>7 [4,3,1,1]=>8 [4,2,2,1]=>9 [4,2,1,1,1]=>11 [4,1,1,1,1,1]=>15 [3,3,3]=>9 [3,3,2,1]=>10 [3,3,1,1,1]=>12 [3,2,2,2]=>12 [3,2,2,1,1]=>13 [3,2,1,1,1,1]=>16 [3,1,1,1,1,1,1]=>21 [2,2,2,2,1]=>16 [2,2,2,1,1,1]=>18 [2,2,1,1,1,1,1]=>22 [2,1,1,1,1,1,1,1]=>28 [1,1,1,1,1,1,1,1,1]=>36 [10]=>0 [9,1]=>1 [8,2]=>2 [8,1,1]=>3 [7,3]=>3 [7,2,1]=>4 [7,1,1,1]=>6 [6,4]=>4 [6,3,1]=>5 [6,2,2]=>6 [6,2,1,1]=>7 [6,1,1,1,1]=>10 [5,5]=>5 [5,4,1]=>6 [5,3,2]=>7 [5,3,1,1]=>8 [5,2,2,1]=>9 [5,2,1,1,1]=>11 [5,1,1,1,1,1]=>15 [4,4,2]=>8 [4,4,1,1]=>9 [4,3,3]=>9 [4,3,2,1]=>10 [4,3,1,1,1]=>12 [4,2,2,2]=>12 [4,2,2,1,1]=>13 [4,2,1,1,1,1]=>16 [4,1,1,1,1,1,1]=>21 [3,3,3,1]=>12 [3,3,2,2]=>13 [3,3,2,1,1]=>14 [3,3,1,1,1,1]=>17 [3,2,2,2,1]=>16 [3,2,2,1,1,1]=>18 [3,2,1,1,1,1,1]=>22 [3,1,1,1,1,1,1,1]=>28 [2,2,2,2,2]=>20 [2,2,2,2,1,1]=>21 [2,2,2,1,1,1,1]=>24 [2,2,1,1,1,1,1,1]=>29 [2,1,1,1,1,1,1,1,1]=>36 [1,1,1,1,1,1,1,1,1,1]=>45 [8,3]=>3 [7,4]=>4 [6,5]=>5 [6,4,1]=>6 [5,5,1]=>7 [5,4,2]=>8 [5,4,1,1]=>9 [5,3,3]=>9 [5,3,2,1]=>10 [5,3,1,1,1]=>12 [5,2,2,2]=>12 [5,2,2,1,1]=>13 [4,4,3]=>10 [4,4,2,1]=>11 [4,4,1,1,1]=>13 [4,3,3,1]=>12 [4,3,2,2]=>13 [4,3,2,1,1]=>14 [4,2,2,2,1]=>16 [3,3,3,2]=>15 [3,3,3,1,1]=>16 [3,3,2,2,1]=>17 [3,2,2,2,2]=>20 [2,2,2,2,2,1]=>25 [7,5]=>5 [7,4,1]=>6 [6,6]=>6 [6,4,2]=>8 [5,5,2]=>9 [5,4,3]=>10 [5,4,2,1]=>11 [5,4,1,1,1]=>13 [5,3,3,1]=>12 [5,3,2,2]=>13 [5,3,2,1,1]=>14 [5,2,2,2,1]=>16 [4,4,4]=>12 [4,4,3,1]=>13 [4,4,2,2]=>14 [4,4,2,1,1]=>15 [4,3,3,2]=>15 [4,3,3,1,1]=>16 [4,3,2,2,1]=>17 [3,3,3,3]=>18 [3,3,3,2,1]=>19 [3,3,2,2,2]=>21 [3,3,2,2,1,1]=>22 [2,2,2,2,2,2]=>30 [8,5]=>5 [7,5,1]=>7 [7,4,2]=>8 [5,5,3]=>11 [5,4,4]=>12 [5,4,3,1]=>13 [5,4,2,2]=>14 [5,4,2,1,1]=>15 [5,3,3,2]=>15 [5,3,3,1,1]=>16 [5,3,2,2,1]=>17 [4,4,4,1]=>15 [4,4,3,2]=>16 [4,4,3,1,1]=>17 [4,4,2,2,1]=>18 [4,3,3,3]=>18 [4,3,3,2,1]=>19 [3,3,3,3,1]=>22 [3,3,3,2,2]=>23 [9,5]=>5 [8,5,1]=>7 [7,5,2]=>9 [7,4,3]=>10 [5,5,4]=>13 [5,4,3,2]=>16 [5,4,3,1,1]=>17 [5,4,2,2,1]=>18 [5,3,3,2,1]=>19 [5,3,2,2,2]=>21 [4,4,4,2]=>18 [4,4,3,3]=>19 [4,4,3,2,1]=>20 [3,3,3,3,2]=>26 [9,5,1]=>7 [8,5,2]=>9 [7,5,3]=>11 [5,5,5]=>15 [5,4,3,2,1]=>20 [5,3,2,2,2,1]=>26 [4,4,4,3]=>21 [3,3,3,3,3]=>30 [8,5,3]=>11 [7,5,3,1]=>14 [4,4,4,4]=>24 [8,6,3]=>12 [9,6,3]=>12 [8,6,4]=>14 [9,6,4]=>14 [8,5,4,2]=>19 [8,5,5,1]=>18 [7,5,4,3,1]=>26 [8,6,4,2]=>20 [10,6,4]=>14 [10,7,3]=>13 [9,7,4]=>15 [9,5,5,1]=>18 [6,5,4,3,2,1]=>35 [11,7,3]=>13 [9,6,4,3]=>23 [9,6,5,3]=>25 [8,6,5,3,1]=>29 [11,7,5,1]=>20 [9,7,5,3]=>26 [9,7,5,3,1]=>30 [10,7,5,3]=>26 [9,7,5,4,1]=>33 [7,6,5,4,3,2,1]=>56 [10,7,6,4,1]=>35 [9,7,6,4,2]=>39 [10,8,5,4,1]=>34 [10,8,6,4,1]=>36 [9,7,5,5,3,1]=>49 [11,8,6,4,1]=>36 [10,8,6,4,2]=>40 [11,8,6,5,1]=>39 [12,9,7,5,1]=>42 [13,9,7,5,1]=>42 [11,9,7,5,3,1]=>55 [11,8,7,5,4,1]=>58 [8,7,6,5,4,3,2,1]=>84 [11,9,7,5,5,3]=>73 [11,9,7,7,5,3,3]=>97 [11,9,7,6,5,3,1]=>82 [13,11,9,7,5,3,1]=>91 [13,11,9,7,7,5,3,1]=>128 [17,13,11,9,7,5,1]=>121 [15,13,11,9,7,5,3,1]=>140 [29,23,19,17,13,11,7,1]=>268
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The weighted size of a partition.
Let $\lambda = (\lambda_0\geq\lambda_1 \geq \dots\geq\lambda_m)$ be an integer partition. Then the weighted size of $\lambda$ is
$$\sum_{i=0}^m i \cdot \lambda_i.$$
This is also the sum of the leg lengths of the cells in $\lambda$, or
$$ \sum_i \binom{\lambda^{\prime}_i}{2} $$
where $\lambda^{\prime}$ is the conjugate partition of $\lambda$.
This is the minimal number of inversions a permutation with the given shape can have, see [1, cor.2.2].
This is also the smallest possible sum of the entries of a semistandard tableau (allowing 0 as a part) of shape $\lambda=(\lambda_0,\lambda_1,\ldots,\lambda_m)$, obtained uniquely by placing $i-1$ in all the cells of the $i$th row of $\lambda$, see [2, eq.7.103].
References
[1] Hohlweg, C. Minimal and maximal elements in Kazhdan-Lusztig double sided cells of $S_n$ and Robinson-Schensted correspondance arXiv:math/0304059
[2] Stanley, R. P. Enumerative combinatorics. Vol. 2 MathSciNet:1676282
Code
def statistic(L):
    return L.weighted_size()
Created
May 07, 2014 at 03:07 by Lahiru Kariyawasam
Updated
Oct 11, 2023 at 15:39 by Martin Rubey