Identifier
- St000253: Set partitions ⟶ ℤ
Values
=>
Cc0009;cc-rep
{{1,2}}=>1
{{1},{2}}=>0
{{1,2,3}}=>1
{{1,2},{3}}=>1
{{1,3},{2}}=>1
{{1},{2,3}}=>1
{{1},{2},{3}}=>0
{{1,2,3,4}}=>1
{{1,2,3},{4}}=>1
{{1,2,4},{3}}=>1
{{1,2},{3,4}}=>1
{{1,2},{3},{4}}=>1
{{1,3,4},{2}}=>1
{{1,3},{2,4}}=>2
{{1,3},{2},{4}}=>1
{{1,4},{2,3}}=>1
{{1},{2,3,4}}=>1
{{1},{2,3},{4}}=>1
{{1,4},{2},{3}}=>1
{{1},{2,4},{3}}=>1
{{1},{2},{3,4}}=>1
{{1},{2},{3},{4}}=>0
{{1,2,3,4,5}}=>1
{{1,2,3,4},{5}}=>1
{{1,2,3,5},{4}}=>1
{{1,2,3},{4,5}}=>1
{{1,2,3},{4},{5}}=>1
{{1,2,4,5},{3}}=>1
{{1,2,4},{3,5}}=>2
{{1,2,4},{3},{5}}=>1
{{1,2,5},{3,4}}=>1
{{1,2},{3,4,5}}=>1
{{1,2},{3,4},{5}}=>1
{{1,2,5},{3},{4}}=>1
{{1,2},{3,5},{4}}=>1
{{1,2},{3},{4,5}}=>1
{{1,2},{3},{4},{5}}=>1
{{1,3,4,5},{2}}=>1
{{1,3,4},{2,5}}=>2
{{1,3,4},{2},{5}}=>1
{{1,3,5},{2,4}}=>2
{{1,3},{2,4,5}}=>2
{{1,3},{2,4},{5}}=>2
{{1,3,5},{2},{4}}=>1
{{1,3},{2,5},{4}}=>2
{{1,3},{2},{4,5}}=>1
{{1,3},{2},{4},{5}}=>1
{{1,4,5},{2,3}}=>1
{{1,4},{2,3,5}}=>2
{{1,4},{2,3},{5}}=>1
{{1,5},{2,3,4}}=>1
{{1},{2,3,4,5}}=>1
{{1},{2,3,4},{5}}=>1
{{1,5},{2,3},{4}}=>1
{{1},{2,3,5},{4}}=>1
{{1},{2,3},{4,5}}=>1
{{1},{2,3},{4},{5}}=>1
{{1,4,5},{2},{3}}=>1
{{1,4},{2,5},{3}}=>2
{{1,4},{2},{3,5}}=>2
{{1,4},{2},{3},{5}}=>1
{{1,5},{2,4},{3}}=>1
{{1},{2,4,5},{3}}=>1
{{1},{2,4},{3,5}}=>2
{{1},{2,4},{3},{5}}=>1
{{1,5},{2},{3,4}}=>1
{{1},{2,5},{3,4}}=>1
{{1},{2},{3,4,5}}=>1
{{1},{2},{3,4},{5}}=>1
{{1,5},{2},{3},{4}}=>1
{{1},{2,5},{3},{4}}=>1
{{1},{2},{3,5},{4}}=>1
{{1},{2},{3},{4,5}}=>1
{{1},{2},{3},{4},{5}}=>0
{{1,2,3,4,5,6}}=>1
{{1,2,3,4,5},{6}}=>1
{{1,2,3,4,6},{5}}=>1
{{1,2,3,4},{5,6}}=>1
{{1,2,3,4},{5},{6}}=>1
{{1,2,3,5,6},{4}}=>1
{{1,2,3,5},{4,6}}=>2
{{1,2,3,5},{4},{6}}=>1
{{1,2,3,6},{4,5}}=>1
{{1,2,3},{4,5,6}}=>1
{{1,2,3},{4,5},{6}}=>1
{{1,2,3,6},{4},{5}}=>1
{{1,2,3},{4,6},{5}}=>1
{{1,2,3},{4},{5,6}}=>1
{{1,2,3},{4},{5},{6}}=>1
{{1,2,4,5,6},{3}}=>1
{{1,2,4,5},{3,6}}=>2
{{1,2,4,5},{3},{6}}=>1
{{1,2,4,6},{3,5}}=>2
{{1,2,4},{3,5,6}}=>2
{{1,2,4},{3,5},{6}}=>2
{{1,2,4,6},{3},{5}}=>1
{{1,2,4},{3,6},{5}}=>2
{{1,2,4},{3},{5,6}}=>1
{{1,2,4},{3},{5},{6}}=>1
{{1,2,5,6},{3,4}}=>1
{{1,2,5},{3,4,6}}=>2
{{1,2,5},{3,4},{6}}=>1
{{1,2,6},{3,4,5}}=>1
{{1,2},{3,4,5,6}}=>1
{{1,2},{3,4,5},{6}}=>1
{{1,2,6},{3,4},{5}}=>1
{{1,2},{3,4,6},{5}}=>1
{{1,2},{3,4},{5,6}}=>1
{{1,2},{3,4},{5},{6}}=>1
{{1,2,5,6},{3},{4}}=>1
{{1,2,5},{3,6},{4}}=>2
{{1,2,5},{3},{4,6}}=>2
{{1,2,5},{3},{4},{6}}=>1
{{1,2,6},{3,5},{4}}=>1
{{1,2},{3,5,6},{4}}=>1
{{1,2},{3,5},{4,6}}=>2
{{1,2},{3,5},{4},{6}}=>1
{{1,2,6},{3},{4,5}}=>1
{{1,2},{3,6},{4,5}}=>1
{{1,2},{3},{4,5,6}}=>1
{{1,2},{3},{4,5},{6}}=>1
{{1,2,6},{3},{4},{5}}=>1
{{1,2},{3,6},{4},{5}}=>1
{{1,2},{3},{4,6},{5}}=>1
{{1,2},{3},{4},{5,6}}=>1
{{1,2},{3},{4},{5},{6}}=>1
{{1,3,4,5,6},{2}}=>1
{{1,3,4,5},{2,6}}=>2
{{1,3,4,5},{2},{6}}=>1
{{1,3,4,6},{2,5}}=>2
{{1,3,4},{2,5,6}}=>2
{{1,3,4},{2,5},{6}}=>2
{{1,3,4,6},{2},{5}}=>1
{{1,3,4},{2,6},{5}}=>2
{{1,3,4},{2},{5,6}}=>1
{{1,3,4},{2},{5},{6}}=>1
{{1,3,5,6},{2,4}}=>2
{{1,3,5},{2,4,6}}=>2
{{1,3,5},{2,4},{6}}=>2
{{1,3,6},{2,4,5}}=>2
{{1,3},{2,4,5,6}}=>2
{{1,3},{2,4,5},{6}}=>2
{{1,3,6},{2,4},{5}}=>2
{{1,3},{2,4,6},{5}}=>2
{{1,3},{2,4},{5,6}}=>2
{{1,3},{2,4},{5},{6}}=>2
{{1,3,5,6},{2},{4}}=>1
{{1,3,5},{2,6},{4}}=>2
{{1,3,5},{2},{4,6}}=>2
{{1,3,5},{2},{4},{6}}=>1
{{1,3,6},{2,5},{4}}=>2
{{1,3},{2,5,6},{4}}=>2
{{1,3},{2,5},{4,6}}=>2
{{1,3},{2,5},{4},{6}}=>2
{{1,3,6},{2},{4,5}}=>1
{{1,3},{2,6},{4,5}}=>2
{{1,3},{2},{4,5,6}}=>1
{{1,3},{2},{4,5},{6}}=>1
{{1,3,6},{2},{4},{5}}=>1
{{1,3},{2,6},{4},{5}}=>2
{{1,3},{2},{4,6},{5}}=>1
{{1,3},{2},{4},{5,6}}=>1
{{1,3},{2},{4},{5},{6}}=>1
{{1,4,5,6},{2,3}}=>1
{{1,4,5},{2,3,6}}=>2
{{1,4,5},{2,3},{6}}=>1
{{1,4,6},{2,3,5}}=>2
{{1,4},{2,3,5,6}}=>2
{{1,4},{2,3,5},{6}}=>2
{{1,4,6},{2,3},{5}}=>1
{{1,4},{2,3,6},{5}}=>2
{{1,4},{2,3},{5,6}}=>1
{{1,4},{2,3},{5},{6}}=>1
{{1,5,6},{2,3,4}}=>1
{{1,5},{2,3,4,6}}=>2
{{1,5},{2,3,4},{6}}=>1
{{1,6},{2,3,4,5}}=>1
{{1},{2,3,4,5,6}}=>1
{{1},{2,3,4,5},{6}}=>1
{{1,6},{2,3,4},{5}}=>1
{{1},{2,3,4,6},{5}}=>1
{{1},{2,3,4},{5,6}}=>1
{{1},{2,3,4},{5},{6}}=>1
{{1,5,6},{2,3},{4}}=>1
{{1,5},{2,3,6},{4}}=>2
{{1,5},{2,3},{4,6}}=>2
{{1,5},{2,3},{4},{6}}=>1
{{1,6},{2,3,5},{4}}=>1
{{1},{2,3,5,6},{4}}=>1
{{1},{2,3,5},{4,6}}=>2
{{1},{2,3,5},{4},{6}}=>1
{{1,6},{2,3},{4,5}}=>1
{{1},{2,3,6},{4,5}}=>1
{{1},{2,3},{4,5,6}}=>1
{{1},{2,3},{4,5},{6}}=>1
{{1,6},{2,3},{4},{5}}=>1
{{1},{2,3,6},{4},{5}}=>1
{{1},{2,3},{4,6},{5}}=>1
{{1},{2,3},{4},{5,6}}=>1
{{1},{2,3},{4},{5},{6}}=>1
{{1,4,5,6},{2},{3}}=>1
{{1,4,5},{2,6},{3}}=>2
{{1,4,5},{2},{3,6}}=>2
{{1,4,5},{2},{3},{6}}=>1
{{1,4,6},{2,5},{3}}=>2
{{1,4},{2,5,6},{3}}=>2
{{1,4},{2,5},{3,6}}=>3
{{1,4},{2,5},{3},{6}}=>2
{{1,4,6},{2},{3,5}}=>2
{{1,4},{2,6},{3,5}}=>2
{{1,4},{2},{3,5,6}}=>2
{{1,4},{2},{3,5},{6}}=>2
{{1,4,6},{2},{3},{5}}=>1
{{1,4},{2,6},{3},{5}}=>2
{{1,4},{2},{3,6},{5}}=>2
{{1,4},{2},{3},{5,6}}=>1
{{1,4},{2},{3},{5},{6}}=>1
{{1,5,6},{2,4},{3}}=>1
{{1,5},{2,4,6},{3}}=>2
{{1,5},{2,4},{3,6}}=>2
{{1,5},{2,4},{3},{6}}=>1
{{1,6},{2,4,5},{3}}=>1
{{1},{2,4,5,6},{3}}=>1
{{1},{2,4,5},{3,6}}=>2
{{1},{2,4,5},{3},{6}}=>1
{{1,6},{2,4},{3,5}}=>2
{{1},{2,4,6},{3,5}}=>2
{{1},{2,4},{3,5,6}}=>2
{{1},{2,4},{3,5},{6}}=>2
{{1,6},{2,4},{3},{5}}=>1
{{1},{2,4,6},{3},{5}}=>1
{{1},{2,4},{3,6},{5}}=>2
{{1},{2,4},{3},{5,6}}=>1
{{1},{2,4},{3},{5},{6}}=>1
{{1,5,6},{2},{3,4}}=>1
{{1,5},{2,6},{3,4}}=>2
{{1,5},{2},{3,4,6}}=>2
{{1,5},{2},{3,4},{6}}=>1
{{1,6},{2,5},{3,4}}=>1
{{1},{2,5,6},{3,4}}=>1
{{1},{2,5},{3,4,6}}=>2
{{1},{2,5},{3,4},{6}}=>1
{{1,6},{2},{3,4,5}}=>1
{{1},{2,6},{3,4,5}}=>1
{{1},{2},{3,4,5,6}}=>1
{{1},{2},{3,4,5},{6}}=>1
{{1,6},{2},{3,4},{5}}=>1
{{1},{2,6},{3,4},{5}}=>1
{{1},{2},{3,4,6},{5}}=>1
{{1},{2},{3,4},{5,6}}=>1
{{1},{2},{3,4},{5},{6}}=>1
{{1,5,6},{2},{3},{4}}=>1
{{1,5},{2,6},{3},{4}}=>2
{{1,5},{2},{3,6},{4}}=>2
{{1,5},{2},{3},{4,6}}=>2
{{1,5},{2},{3},{4},{6}}=>1
{{1,6},{2,5},{3},{4}}=>1
{{1},{2,5,6},{3},{4}}=>1
{{1},{2,5},{3,6},{4}}=>2
{{1},{2,5},{3},{4,6}}=>2
{{1},{2,5},{3},{4},{6}}=>1
{{1,6},{2},{3,5},{4}}=>1
{{1},{2,6},{3,5},{4}}=>1
{{1},{2},{3,5,6},{4}}=>1
{{1},{2},{3,5},{4,6}}=>2
{{1},{2},{3,5},{4},{6}}=>1
{{1,6},{2},{3},{4,5}}=>1
{{1},{2,6},{3},{4,5}}=>1
{{1},{2},{3,6},{4,5}}=>1
{{1},{2},{3},{4,5,6}}=>1
{{1},{2},{3},{4,5},{6}}=>1
{{1,6},{2},{3},{4},{5}}=>1
{{1},{2,6},{3},{4},{5}}=>1
{{1},{2},{3,6},{4},{5}}=>1
{{1},{2},{3},{4,6},{5}}=>1
{{1},{2},{3},{4},{5,6}}=>1
{{1},{2},{3},{4},{5},{6}}=>0
{{1,2,3,4,5,6,7}}=>1
{{1,2,3,4,5,6},{7}}=>1
{{1,2,3,4,5,7},{6}}=>1
{{1,2,3,4,5},{6,7}}=>1
{{1,2,3,4,5},{6},{7}}=>1
{{1,2,3,4,6,7},{5}}=>1
{{1,2,3,4,6},{5,7}}=>2
{{1,2,3,4,6},{5},{7}}=>1
{{1,2,3,4,7},{5,6}}=>1
{{1,2,3,4},{5,6,7}}=>1
{{1,2,3,4},{5,6},{7}}=>1
{{1,2,3,4,7},{5},{6}}=>1
{{1,2,3,4},{5,7},{6}}=>1
{{1,2,3,4},{5},{6,7}}=>1
{{1,2,3,4},{5},{6},{7}}=>1
{{1,2,3,5,6,7},{4}}=>1
{{1,2,3,5,6},{4,7}}=>2
{{1,2,3,5,6},{4},{7}}=>1
{{1,2,3,5,7},{4,6}}=>2
{{1,2,3,5},{4,6,7}}=>2
{{1,2,3,5},{4,6},{7}}=>2
{{1,2,3,5,7},{4},{6}}=>1
{{1,2,3,5},{4,7},{6}}=>2
{{1,2,3,5},{4},{6,7}}=>1
{{1,2,3,5},{4},{6},{7}}=>1
{{1,2,3,6,7},{4,5}}=>1
{{1,2,3,6},{4,5,7}}=>2
{{1,2,3,6},{4,5},{7}}=>1
{{1,2,3,7},{4,5,6}}=>1
{{1,2,3},{4,5,6,7}}=>1
{{1,2,3},{4,5,6},{7}}=>1
{{1,2,3,7},{4,5},{6}}=>1
{{1,2,3},{4,5,7},{6}}=>1
{{1,2,3},{4,5},{6,7}}=>1
{{1,2,3},{4,5},{6},{7}}=>1
{{1,2,3,6,7},{4},{5}}=>1
{{1,2,3,6},{4,7},{5}}=>2
{{1,2,3,6},{4},{5,7}}=>2
{{1,2,3,6},{4},{5},{7}}=>1
{{1,2,3,7},{4,6},{5}}=>1
{{1,2,3},{4,6,7},{5}}=>1
{{1,2,3},{4,6},{5,7}}=>2
{{1,2,3},{4,6},{5},{7}}=>1
{{1,2,3,7},{4},{5,6}}=>1
{{1,2,3},{4,7},{5,6}}=>1
{{1,2,3},{4},{5,6,7}}=>1
{{1,2,3},{4},{5,6},{7}}=>1
{{1,2,3,7},{4},{5},{6}}=>1
{{1,2,3},{4,7},{5},{6}}=>1
{{1,2,3},{4},{5,7},{6}}=>1
{{1,2,3},{4},{5},{6,7}}=>1
{{1,2,3},{4},{5},{6},{7}}=>1
{{1,2,4,5,6,7},{3}}=>1
{{1,2,4,5,6},{3,7}}=>2
{{1,2,4,5,6},{3},{7}}=>1
{{1,2,4,5,7},{3,6}}=>2
{{1,2,4,5},{3,6,7}}=>2
{{1,2,4,5},{3,6},{7}}=>2
{{1,2,4,5,7},{3},{6}}=>1
{{1,2,4,5},{3,7},{6}}=>2
{{1,2,4,5},{3},{6,7}}=>1
{{1,2,4,5},{3},{6},{7}}=>1
{{1,2,4,6,7},{3,5}}=>2
{{1,2,4,6},{3,5,7}}=>2
{{1,2,4,6},{3,5},{7}}=>2
{{1,2,4,7},{3,5,6}}=>2
{{1,2,4},{3,5,6,7}}=>2
{{1,2,4},{3,5,6},{7}}=>2
{{1,2,4,7},{3,5},{6}}=>2
{{1,2,4},{3,5,7},{6}}=>2
{{1,2,4},{3,5},{6,7}}=>2
{{1,2,4},{3,5},{6},{7}}=>2
{{1,2,4,6,7},{3},{5}}=>1
{{1,2,4,6},{3,7},{5}}=>2
{{1,2,4,6},{3},{5,7}}=>2
{{1,2,4,6},{3},{5},{7}}=>1
{{1,2,4,7},{3,6},{5}}=>2
{{1,2,4},{3,6,7},{5}}=>2
{{1,2,4},{3,6},{5,7}}=>2
{{1,2,4},{3,6},{5},{7}}=>2
{{1,2,4,7},{3},{5,6}}=>1
{{1,2,4},{3,7},{5,6}}=>2
{{1,2,4},{3},{5,6,7}}=>1
{{1,2,4},{3},{5,6},{7}}=>1
{{1,2,4,7},{3},{5},{6}}=>1
{{1,2,4},{3,7},{5},{6}}=>2
{{1,2,4},{3},{5,7},{6}}=>1
{{1,2,4},{3},{5},{6,7}}=>1
{{1,2,4},{3},{5},{6},{7}}=>1
{{1,2,5,6,7},{3,4}}=>1
{{1,2,5,6},{3,4,7}}=>2
{{1,2,5,6},{3,4},{7}}=>1
{{1,2,5,7},{3,4,6}}=>2
{{1,2,5},{3,4,6,7}}=>2
{{1,2,5},{3,4,6},{7}}=>2
{{1,2,5,7},{3,4},{6}}=>1
{{1,2,5},{3,4,7},{6}}=>2
{{1,2,5},{3,4},{6,7}}=>1
{{1,2,5},{3,4},{6},{7}}=>1
{{1,2,6,7},{3,4,5}}=>1
{{1,2,6},{3,4,5,7}}=>2
{{1,2,6},{3,4,5},{7}}=>1
{{1,2,7},{3,4,5,6}}=>1
{{1,2},{3,4,5,6,7}}=>1
{{1,2},{3,4,5,6},{7}}=>1
{{1,2,7},{3,4,5},{6}}=>1
{{1,2},{3,4,5,7},{6}}=>1
{{1,2},{3,4,5},{6,7}}=>1
{{1,2},{3,4,5},{6},{7}}=>1
{{1,2,6,7},{3,4},{5}}=>1
{{1,2,6},{3,4,7},{5}}=>2
{{1,2,6},{3,4},{5,7}}=>2
{{1,2,6},{3,4},{5},{7}}=>1
{{1,2,7},{3,4,6},{5}}=>1
{{1,2},{3,4,6,7},{5}}=>1
{{1,2},{3,4,6},{5,7}}=>2
{{1,2},{3,4,6},{5},{7}}=>1
{{1,2,7},{3,4},{5,6}}=>1
{{1,2},{3,4,7},{5,6}}=>1
{{1,2},{3,4},{5,6,7}}=>1
{{1,2},{3,4},{5,6},{7}}=>1
{{1,2,7},{3,4},{5},{6}}=>1
{{1,2},{3,4,7},{5},{6}}=>1
{{1,2},{3,4},{5,7},{6}}=>1
{{1,2},{3,4},{5},{6,7}}=>1
{{1,2},{3,4},{5},{6},{7}}=>1
{{1,2,5,6,7},{3},{4}}=>1
{{1,2,5,6},{3,7},{4}}=>2
{{1,2,5,6},{3},{4,7}}=>2
{{1,2,5,6},{3},{4},{7}}=>1
{{1,2,5,7},{3,6},{4}}=>2
{{1,2,5},{3,6,7},{4}}=>2
{{1,2,5},{3,6},{4,7}}=>3
{{1,2,5},{3,6},{4},{7}}=>2
{{1,2,5,7},{3},{4,6}}=>2
{{1,2,5},{3,7},{4,6}}=>2
{{1,2,5},{3},{4,6,7}}=>2
{{1,2,5},{3},{4,6},{7}}=>2
{{1,2,5,7},{3},{4},{6}}=>1
{{1,2,5},{3,7},{4},{6}}=>2
{{1,2,5},{3},{4,7},{6}}=>2
{{1,2,5},{3},{4},{6,7}}=>1
{{1,2,5},{3},{4},{6},{7}}=>1
{{1,2,6,7},{3,5},{4}}=>1
{{1,2,6},{3,5,7},{4}}=>2
{{1,2,6},{3,5},{4,7}}=>2
{{1,2,6},{3,5},{4},{7}}=>1
{{1,2,7},{3,5,6},{4}}=>1
{{1,2},{3,5,6,7},{4}}=>1
{{1,2},{3,5,6},{4,7}}=>2
{{1,2},{3,5,6},{4},{7}}=>1
{{1,2,7},{3,5},{4,6}}=>2
{{1,2},{3,5,7},{4,6}}=>2
{{1,2},{3,5},{4,6,7}}=>2
{{1,2},{3,5},{4,6},{7}}=>2
{{1,2,7},{3,5},{4},{6}}=>1
{{1,2},{3,5,7},{4},{6}}=>1
{{1,2},{3,5},{4,7},{6}}=>2
{{1,2},{3,5},{4},{6,7}}=>1
{{1,2},{3,5},{4},{6},{7}}=>1
{{1,2,6,7},{3},{4,5}}=>1
{{1,2,6},{3,7},{4,5}}=>2
{{1,2,6},{3},{4,5,7}}=>2
{{1,2,6},{3},{4,5},{7}}=>1
{{1,2,7},{3,6},{4,5}}=>1
{{1,2},{3,6,7},{4,5}}=>1
{{1,2},{3,6},{4,5,7}}=>2
{{1,2},{3,6},{4,5},{7}}=>1
{{1,2,7},{3},{4,5,6}}=>1
{{1,2},{3,7},{4,5,6}}=>1
{{1,2},{3},{4,5,6,7}}=>1
{{1,2},{3},{4,5,6},{7}}=>1
{{1,2,7},{3},{4,5},{6}}=>1
{{1,2},{3,7},{4,5},{6}}=>1
{{1,2},{3},{4,5,7},{6}}=>1
{{1,2},{3},{4,5},{6,7}}=>1
{{1,2},{3},{4,5},{6},{7}}=>1
{{1,2,6,7},{3},{4},{5}}=>1
{{1,2,6},{3,7},{4},{5}}=>2
{{1,2,6},{3},{4,7},{5}}=>2
{{1,2,6},{3},{4},{5,7}}=>2
{{1,2,6},{3},{4},{5},{7}}=>1
{{1,2,7},{3,6},{4},{5}}=>1
{{1,2},{3,6,7},{4},{5}}=>1
{{1,2},{3,6},{4,7},{5}}=>2
{{1,2},{3,6},{4},{5,7}}=>2
{{1,2},{3,6},{4},{5},{7}}=>1
{{1,2,7},{3},{4,6},{5}}=>1
{{1,2},{3,7},{4,6},{5}}=>1
{{1,2},{3},{4,6,7},{5}}=>1
{{1,2},{3},{4,6},{5,7}}=>2
{{1,2},{3},{4,6},{5},{7}}=>1
{{1,2,7},{3},{4},{5,6}}=>1
{{1,2},{3,7},{4},{5,6}}=>1
{{1,2},{3},{4,7},{5,6}}=>1
{{1,2},{3},{4},{5,6,7}}=>1
{{1,2},{3},{4},{5,6},{7}}=>1
{{1,2,7},{3},{4},{5},{6}}=>1
{{1,2},{3,7},{4},{5},{6}}=>1
{{1,2},{3},{4,7},{5},{6}}=>1
{{1,2},{3},{4},{5,7},{6}}=>1
{{1,2},{3},{4},{5},{6,7}}=>1
{{1,2},{3},{4},{5},{6},{7}}=>1
{{1,3,4,5,6,7},{2}}=>1
{{1,3,4,5,6},{2,7}}=>2
{{1,3,4,5,6},{2},{7}}=>1
{{1,3,4,5,7},{2,6}}=>2
{{1,3,4,5},{2,6,7}}=>2
{{1,3,4,5},{2,6},{7}}=>2
{{1,3,4,5,7},{2},{6}}=>1
{{1,3,4,5},{2,7},{6}}=>2
{{1,3,4,5},{2},{6,7}}=>1
{{1,3,4,5},{2},{6},{7}}=>1
{{1,3,4,6,7},{2,5}}=>2
{{1,3,4,6},{2,5,7}}=>2
{{1,3,4,6},{2,5},{7}}=>2
{{1,3,4,7},{2,5,6}}=>2
{{1,3,4},{2,5,6,7}}=>2
{{1,3,4},{2,5,6},{7}}=>2
{{1,3,4,7},{2,5},{6}}=>2
{{1,3,4},{2,5,7},{6}}=>2
{{1,3,4},{2,5},{6,7}}=>2
{{1,3,4},{2,5},{6},{7}}=>2
{{1,3,4,6,7},{2},{5}}=>1
{{1,3,4,6},{2,7},{5}}=>2
{{1,3,4,6},{2},{5,7}}=>2
{{1,3,4,6},{2},{5},{7}}=>1
{{1,3,4,7},{2,6},{5}}=>2
{{1,3,4},{2,6,7},{5}}=>2
{{1,3,4},{2,6},{5,7}}=>2
{{1,3,4},{2,6},{5},{7}}=>2
{{1,3,4,7},{2},{5,6}}=>1
{{1,3,4},{2,7},{5,6}}=>2
{{1,3,4},{2},{5,6,7}}=>1
{{1,3,4},{2},{5,6},{7}}=>1
{{1,3,4,7},{2},{5},{6}}=>1
{{1,3,4},{2,7},{5},{6}}=>2
{{1,3,4},{2},{5,7},{6}}=>1
{{1,3,4},{2},{5},{6,7}}=>1
{{1,3,4},{2},{5},{6},{7}}=>1
{{1,3,5,6,7},{2,4}}=>2
{{1,3,5,6},{2,4,7}}=>2
{{1,3,5,6},{2,4},{7}}=>2
{{1,3,5,7},{2,4,6}}=>2
{{1,3,5},{2,4,6,7}}=>2
{{1,3,5},{2,4,6},{7}}=>2
{{1,3,5,7},{2,4},{6}}=>2
{{1,3,5},{2,4,7},{6}}=>2
{{1,3,5},{2,4},{6,7}}=>2
{{1,3,5},{2,4},{6},{7}}=>2
{{1,3,6,7},{2,4,5}}=>2
{{1,3,6},{2,4,5,7}}=>2
{{1,3,6},{2,4,5},{7}}=>2
{{1,3,7},{2,4,5,6}}=>2
{{1,3},{2,4,5,6,7}}=>2
{{1,3},{2,4,5,6},{7}}=>2
{{1,3,7},{2,4,5},{6}}=>2
{{1,3},{2,4,5,7},{6}}=>2
{{1,3},{2,4,5},{6,7}}=>2
{{1,3},{2,4,5},{6},{7}}=>2
{{1,3,6,7},{2,4},{5}}=>2
{{1,3,6},{2,4,7},{5}}=>2
{{1,3,6},{2,4},{5,7}}=>2
{{1,3,6},{2,4},{5},{7}}=>2
{{1,3,7},{2,4,6},{5}}=>2
{{1,3},{2,4,6,7},{5}}=>2
{{1,3},{2,4,6},{5,7}}=>2
{{1,3},{2,4,6},{5},{7}}=>2
{{1,3,7},{2,4},{5,6}}=>2
{{1,3},{2,4,7},{5,6}}=>2
{{1,3},{2,4},{5,6,7}}=>2
{{1,3},{2,4},{5,6},{7}}=>2
{{1,3,7},{2,4},{5},{6}}=>2
{{1,3},{2,4,7},{5},{6}}=>2
{{1,3},{2,4},{5,7},{6}}=>2
{{1,3},{2,4},{5},{6,7}}=>2
{{1,3},{2,4},{5},{6},{7}}=>2
{{1,3,5,6,7},{2},{4}}=>1
{{1,3,5,6},{2,7},{4}}=>2
{{1,3,5,6},{2},{4,7}}=>2
{{1,3,5,6},{2},{4},{7}}=>1
{{1,3,5,7},{2,6},{4}}=>2
{{1,3,5},{2,6,7},{4}}=>2
{{1,3,5},{2,6},{4,7}}=>2
{{1,3,5},{2,6},{4},{7}}=>2
{{1,3,5,7},{2},{4,6}}=>2
{{1,3,5},{2,7},{4,6}}=>2
{{1,3,5},{2},{4,6,7}}=>2
{{1,3,5},{2},{4,6},{7}}=>2
{{1,3,5,7},{2},{4},{6}}=>1
{{1,3,5},{2,7},{4},{6}}=>2
{{1,3,5},{2},{4,7},{6}}=>2
{{1,3,5},{2},{4},{6,7}}=>1
{{1,3,5},{2},{4},{6},{7}}=>1
{{1,3,6,7},{2,5},{4}}=>2
{{1,3,6},{2,5,7},{4}}=>2
{{1,3,6},{2,5},{4,7}}=>3
{{1,3,6},{2,5},{4},{7}}=>2
{{1,3,7},{2,5,6},{4}}=>2
{{1,3},{2,5,6,7},{4}}=>2
{{1,3},{2,5,6},{4,7}}=>2
{{1,3},{2,5,6},{4},{7}}=>2
{{1,3,7},{2,5},{4,6}}=>2
{{1,3},{2,5,7},{4,6}}=>2
{{1,3},{2,5},{4,6,7}}=>2
{{1,3},{2,5},{4,6},{7}}=>2
{{1,3,7},{2,5},{4},{6}}=>2
{{1,3},{2,5,7},{4},{6}}=>2
{{1,3},{2,5},{4,7},{6}}=>2
{{1,3},{2,5},{4},{6,7}}=>2
{{1,3},{2,5},{4},{6},{7}}=>2
{{1,3,6,7},{2},{4,5}}=>1
{{1,3,6},{2,7},{4,5}}=>2
{{1,3,6},{2},{4,5,7}}=>2
{{1,3,6},{2},{4,5},{7}}=>1
{{1,3,7},{2,6},{4,5}}=>2
{{1,3},{2,6,7},{4,5}}=>2
{{1,3},{2,6},{4,5,7}}=>2
{{1,3},{2,6},{4,5},{7}}=>2
{{1,3,7},{2},{4,5,6}}=>1
{{1,3},{2,7},{4,5,6}}=>2
{{1,3},{2},{4,5,6,7}}=>1
{{1,3},{2},{4,5,6},{7}}=>1
{{1,3,7},{2},{4,5},{6}}=>1
{{1,3},{2,7},{4,5},{6}}=>2
{{1,3},{2},{4,5,7},{6}}=>1
{{1,3},{2},{4,5},{6,7}}=>1
{{1,3},{2},{4,5},{6},{7}}=>1
{{1,3,6,7},{2},{4},{5}}=>1
{{1,3,6},{2,7},{4},{5}}=>2
{{1,3,6},{2},{4,7},{5}}=>2
{{1,3,6},{2},{4},{5,7}}=>2
{{1,3,6},{2},{4},{5},{7}}=>1
{{1,3,7},{2,6},{4},{5}}=>2
{{1,3},{2,6,7},{4},{5}}=>2
{{1,3},{2,6},{4,7},{5}}=>2
{{1,3},{2,6},{4},{5,7}}=>2
{{1,3},{2,6},{4},{5},{7}}=>2
{{1,3,7},{2},{4,6},{5}}=>1
{{1,3},{2,7},{4,6},{5}}=>2
{{1,3},{2},{4,6,7},{5}}=>1
{{1,3},{2},{4,6},{5,7}}=>2
{{1,3},{2},{4,6},{5},{7}}=>1
{{1,3,7},{2},{4},{5,6}}=>1
{{1,3},{2,7},{4},{5,6}}=>2
{{1,3},{2},{4,7},{5,6}}=>1
{{1,3},{2},{4},{5,6,7}}=>1
{{1,3},{2},{4},{5,6},{7}}=>1
{{1,3,7},{2},{4},{5},{6}}=>1
{{1,3},{2,7},{4},{5},{6}}=>2
{{1,3},{2},{4,7},{5},{6}}=>1
{{1,3},{2},{4},{5,7},{6}}=>1
{{1,3},{2},{4},{5},{6,7}}=>1
{{1,3},{2},{4},{5},{6},{7}}=>1
{{1,4,5,6,7},{2,3}}=>1
{{1,4,5,6},{2,3,7}}=>2
{{1,4,5,6},{2,3},{7}}=>1
{{1,4,5,7},{2,3,6}}=>2
{{1,4,5},{2,3,6,7}}=>2
{{1,4,5},{2,3,6},{7}}=>2
{{1,4,5,7},{2,3},{6}}=>1
{{1,4,5},{2,3,7},{6}}=>2
{{1,4,5},{2,3},{6,7}}=>1
{{1,4,5},{2,3},{6},{7}}=>1
{{1,4,6,7},{2,3,5}}=>2
{{1,4,6},{2,3,5,7}}=>2
{{1,4,6},{2,3,5},{7}}=>2
{{1,4,7},{2,3,5,6}}=>2
{{1,4},{2,3,5,6,7}}=>2
{{1,4},{2,3,5,6},{7}}=>2
{{1,4,7},{2,3,5},{6}}=>2
{{1,4},{2,3,5,7},{6}}=>2
{{1,4},{2,3,5},{6,7}}=>2
{{1,4},{2,3,5},{6},{7}}=>2
{{1,4,6,7},{2,3},{5}}=>1
{{1,4,6},{2,3,7},{5}}=>2
{{1,4,6},{2,3},{5,7}}=>2
{{1,4,6},{2,3},{5},{7}}=>1
{{1,4,7},{2,3,6},{5}}=>2
{{1,4},{2,3,6,7},{5}}=>2
{{1,4},{2,3,6},{5,7}}=>2
{{1,4},{2,3,6},{5},{7}}=>2
{{1,4,7},{2,3},{5,6}}=>1
{{1,4},{2,3,7},{5,6}}=>2
{{1,4},{2,3},{5,6,7}}=>1
{{1,4},{2,3},{5,6},{7}}=>1
{{1,4,7},{2,3},{5},{6}}=>1
{{1,4},{2,3,7},{5},{6}}=>2
{{1,4},{2,3},{5,7},{6}}=>1
{{1,4},{2,3},{5},{6,7}}=>1
{{1,4},{2,3},{5},{6},{7}}=>1
{{1,5,6,7},{2,3,4}}=>1
{{1,5,6},{2,3,4,7}}=>2
{{1,5,6},{2,3,4},{7}}=>1
{{1,5,7},{2,3,4,6}}=>2
{{1,5},{2,3,4,6,7}}=>2
{{1,5},{2,3,4,6},{7}}=>2
{{1,5,7},{2,3,4},{6}}=>1
{{1,5},{2,3,4,7},{6}}=>2
{{1,5},{2,3,4},{6,7}}=>1
{{1,5},{2,3,4},{6},{7}}=>1
{{1,6,7},{2,3,4,5}}=>1
{{1,6},{2,3,4,5,7}}=>2
{{1,6},{2,3,4,5},{7}}=>1
{{1,7},{2,3,4,5,6}}=>1
{{1},{2,3,4,5,6,7}}=>1
{{1},{2,3,4,5,6},{7}}=>1
{{1,7},{2,3,4,5},{6}}=>1
{{1},{2,3,4,5,7},{6}}=>1
{{1},{2,3,4,5},{6,7}}=>1
{{1},{2,3,4,5},{6},{7}}=>1
{{1,6,7},{2,3,4},{5}}=>1
{{1,6},{2,3,4,7},{5}}=>2
{{1,6},{2,3,4},{5,7}}=>2
{{1,6},{2,3,4},{5},{7}}=>1
{{1,7},{2,3,4,6},{5}}=>1
{{1},{2,3,4,6,7},{5}}=>1
{{1},{2,3,4,6},{5,7}}=>2
{{1},{2,3,4,6},{5},{7}}=>1
{{1,7},{2,3,4},{5,6}}=>1
{{1},{2,3,4,7},{5,6}}=>1
{{1},{2,3,4},{5,6,7}}=>1
{{1},{2,3,4},{5,6},{7}}=>1
{{1,7},{2,3,4},{5},{6}}=>1
{{1},{2,3,4,7},{5},{6}}=>1
{{1},{2,3,4},{5,7},{6}}=>1
{{1},{2,3,4},{5},{6,7}}=>1
{{1},{2,3,4},{5},{6},{7}}=>1
{{1,5,6,7},{2,3},{4}}=>1
{{1,5,6},{2,3,7},{4}}=>2
{{1,5,6},{2,3},{4,7}}=>2
{{1,5,6},{2,3},{4},{7}}=>1
{{1,5,7},{2,3,6},{4}}=>2
{{1,5},{2,3,6,7},{4}}=>2
{{1,5},{2,3,6},{4,7}}=>3
{{1,5},{2,3,6},{4},{7}}=>2
{{1,5,7},{2,3},{4,6}}=>2
{{1,5},{2,3,7},{4,6}}=>2
{{1,5},{2,3},{4,6,7}}=>2
{{1,5},{2,3},{4,6},{7}}=>2
{{1,5,7},{2,3},{4},{6}}=>1
{{1,5},{2,3,7},{4},{6}}=>2
{{1,5},{2,3},{4,7},{6}}=>2
{{1,5},{2,3},{4},{6,7}}=>1
{{1,5},{2,3},{4},{6},{7}}=>1
{{1,6,7},{2,3,5},{4}}=>1
{{1,6},{2,3,5,7},{4}}=>2
{{1,6},{2,3,5},{4,7}}=>2
{{1,6},{2,3,5},{4},{7}}=>1
{{1,7},{2,3,5,6},{4}}=>1
{{1},{2,3,5,6,7},{4}}=>1
{{1},{2,3,5,6},{4,7}}=>2
{{1},{2,3,5,6},{4},{7}}=>1
{{1,7},{2,3,5},{4,6}}=>2
{{1},{2,3,5,7},{4,6}}=>2
{{1},{2,3,5},{4,6,7}}=>2
{{1},{2,3,5},{4,6},{7}}=>2
{{1,7},{2,3,5},{4},{6}}=>1
{{1},{2,3,5,7},{4},{6}}=>1
{{1},{2,3,5},{4,7},{6}}=>2
{{1},{2,3,5},{4},{6,7}}=>1
{{1},{2,3,5},{4},{6},{7}}=>1
{{1,6,7},{2,3},{4,5}}=>1
{{1,6},{2,3,7},{4,5}}=>2
{{1,6},{2,3},{4,5,7}}=>2
{{1,6},{2,3},{4,5},{7}}=>1
{{1,7},{2,3,6},{4,5}}=>1
{{1},{2,3,6,7},{4,5}}=>1
{{1},{2,3,6},{4,5,7}}=>2
{{1},{2,3,6},{4,5},{7}}=>1
{{1,7},{2,3},{4,5,6}}=>1
{{1},{2,3,7},{4,5,6}}=>1
{{1},{2,3},{4,5,6,7}}=>1
{{1},{2,3},{4,5,6},{7}}=>1
{{1,7},{2,3},{4,5},{6}}=>1
{{1},{2,3,7},{4,5},{6}}=>1
{{1},{2,3},{4,5,7},{6}}=>1
{{1},{2,3},{4,5},{6,7}}=>1
{{1},{2,3},{4,5},{6},{7}}=>1
{{1,6,7},{2,3},{4},{5}}=>1
{{1,6},{2,3,7},{4},{5}}=>2
{{1,6},{2,3},{4,7},{5}}=>2
{{1,6},{2,3},{4},{5,7}}=>2
{{1,6},{2,3},{4},{5},{7}}=>1
{{1,7},{2,3,6},{4},{5}}=>1
{{1},{2,3,6,7},{4},{5}}=>1
{{1},{2,3,6},{4,7},{5}}=>2
{{1},{2,3,6},{4},{5,7}}=>2
{{1},{2,3,6},{4},{5},{7}}=>1
{{1,7},{2,3},{4,6},{5}}=>1
{{1},{2,3,7},{4,6},{5}}=>1
{{1},{2,3},{4,6,7},{5}}=>1
{{1},{2,3},{4,6},{5,7}}=>2
{{1},{2,3},{4,6},{5},{7}}=>1
{{1,7},{2,3},{4},{5,6}}=>1
{{1},{2,3,7},{4},{5,6}}=>1
{{1},{2,3},{4,7},{5,6}}=>1
{{1},{2,3},{4},{5,6,7}}=>1
{{1},{2,3},{4},{5,6},{7}}=>1
{{1,7},{2,3},{4},{5},{6}}=>1
{{1},{2,3,7},{4},{5},{6}}=>1
{{1},{2,3},{4,7},{5},{6}}=>1
{{1},{2,3},{4},{5,7},{6}}=>1
{{1},{2,3},{4},{5},{6,7}}=>1
{{1},{2,3},{4},{5},{6},{7}}=>1
{{1,4,5,6,7},{2},{3}}=>1
{{1,4,5,6},{2,7},{3}}=>2
{{1,4,5,6},{2},{3,7}}=>2
{{1,4,5,6},{2},{3},{7}}=>1
{{1,4,5,7},{2,6},{3}}=>2
{{1,4,5},{2,6,7},{3}}=>2
{{1,4,5},{2,6},{3,7}}=>3
{{1,4,5},{2,6},{3},{7}}=>2
{{1,4,5,7},{2},{3,6}}=>2
{{1,4,5},{2,7},{3,6}}=>2
{{1,4,5},{2},{3,6,7}}=>2
{{1,4,5},{2},{3,6},{7}}=>2
{{1,4,5,7},{2},{3},{6}}=>1
{{1,4,5},{2,7},{3},{6}}=>2
{{1,4,5},{2},{3,7},{6}}=>2
{{1,4,5},{2},{3},{6,7}}=>1
{{1,4,5},{2},{3},{6},{7}}=>1
{{1,4,6,7},{2,5},{3}}=>2
{{1,4,6},{2,5,7},{3}}=>2
{{1,4,6},{2,5},{3,7}}=>3
{{1,4,6},{2,5},{3},{7}}=>2
{{1,4,7},{2,5,6},{3}}=>2
{{1,4},{2,5,6,7},{3}}=>2
{{1,4},{2,5,6},{3,7}}=>3
{{1,4},{2,5,6},{3},{7}}=>2
{{1,4,7},{2,5},{3,6}}=>3
{{1,4},{2,5,7},{3,6}}=>3
{{1,4},{2,5},{3,6,7}}=>3
{{1,4},{2,5},{3,6},{7}}=>3
{{1,4,7},{2,5},{3},{6}}=>2
{{1,4},{2,5,7},{3},{6}}=>2
{{1,4},{2,5},{3,7},{6}}=>3
{{1,4},{2,5},{3},{6,7}}=>2
{{1,4},{2,5},{3},{6},{7}}=>2
{{1,4,6,7},{2},{3,5}}=>2
{{1,4,6},{2,7},{3,5}}=>2
{{1,4,6},{2},{3,5,7}}=>2
{{1,4,6},{2},{3,5},{7}}=>2
{{1,4,7},{2,6},{3,5}}=>2
{{1,4},{2,6,7},{3,5}}=>2
{{1,4},{2,6},{3,5,7}}=>2
{{1,4},{2,6},{3,5},{7}}=>2
{{1,4,7},{2},{3,5,6}}=>2
{{1,4},{2,7},{3,5,6}}=>2
{{1,4},{2},{3,5,6,7}}=>2
{{1,4},{2},{3,5,6},{7}}=>2
{{1,4,7},{2},{3,5},{6}}=>2
{{1,4},{2,7},{3,5},{6}}=>2
{{1,4},{2},{3,5,7},{6}}=>2
{{1,4},{2},{3,5},{6,7}}=>2
{{1,4},{2},{3,5},{6},{7}}=>2
{{1,4,6,7},{2},{3},{5}}=>1
{{1,4,6},{2,7},{3},{5}}=>2
{{1,4,6},{2},{3,7},{5}}=>2
{{1,4,6},{2},{3},{5,7}}=>2
{{1,4,6},{2},{3},{5},{7}}=>1
{{1,4,7},{2,6},{3},{5}}=>2
{{1,4},{2,6,7},{3},{5}}=>2
{{1,4},{2,6},{3,7},{5}}=>3
{{1,4},{2,6},{3},{5,7}}=>2
{{1,4},{2,6},{3},{5},{7}}=>2
{{1,4,7},{2},{3,6},{5}}=>2
{{1,4},{2,7},{3,6},{5}}=>2
{{1,4},{2},{3,6,7},{5}}=>2
{{1,4},{2},{3,6},{5,7}}=>2
{{1,4},{2},{3,6},{5},{7}}=>2
{{1,4,7},{2},{3},{5,6}}=>1
{{1,4},{2,7},{3},{5,6}}=>2
{{1,4},{2},{3,7},{5,6}}=>2
{{1,4},{2},{3},{5,6,7}}=>1
{{1,4},{2},{3},{5,6},{7}}=>1
{{1,4,7},{2},{3},{5},{6}}=>1
{{1,4},{2,7},{3},{5},{6}}=>2
{{1,4},{2},{3,7},{5},{6}}=>2
{{1,4},{2},{3},{5,7},{6}}=>1
{{1,4},{2},{3},{5},{6,7}}=>1
{{1,4},{2},{3},{5},{6},{7}}=>1
{{1,5,6,7},{2,4},{3}}=>1
{{1,5,6},{2,4,7},{3}}=>2
{{1,5,6},{2,4},{3,7}}=>2
{{1,5,6},{2,4},{3},{7}}=>1
{{1,5,7},{2,4,6},{3}}=>2
{{1,5},{2,4,6,7},{3}}=>2
{{1,5},{2,4,6},{3,7}}=>2
{{1,5},{2,4,6},{3},{7}}=>2
{{1,5,7},{2,4},{3,6}}=>2
{{1,5},{2,4,7},{3,6}}=>3
{{1,5},{2,4},{3,6,7}}=>2
{{1,5},{2,4},{3,6},{7}}=>2
{{1,5,7},{2,4},{3},{6}}=>1
{{1,5},{2,4,7},{3},{6}}=>2
{{1,5},{2,4},{3,7},{6}}=>2
{{1,5},{2,4},{3},{6,7}}=>1
{{1,5},{2,4},{3},{6},{7}}=>1
{{1,6,7},{2,4,5},{3}}=>1
{{1,6},{2,4,5,7},{3}}=>2
{{1,6},{2,4,5},{3,7}}=>2
{{1,6},{2,4,5},{3},{7}}=>1
{{1,7},{2,4,5,6},{3}}=>1
{{1},{2,4,5,6,7},{3}}=>1
{{1},{2,4,5,6},{3,7}}=>2
{{1},{2,4,5,6},{3},{7}}=>1
{{1,7},{2,4,5},{3,6}}=>2
{{1},{2,4,5,7},{3,6}}=>2
{{1},{2,4,5},{3,6,7}}=>2
{{1},{2,4,5},{3,6},{7}}=>2
{{1,7},{2,4,5},{3},{6}}=>1
{{1},{2,4,5,7},{3},{6}}=>1
{{1},{2,4,5},{3,7},{6}}=>2
{{1},{2,4,5},{3},{6,7}}=>1
{{1},{2,4,5},{3},{6},{7}}=>1
{{1,6,7},{2,4},{3,5}}=>2
{{1,6},{2,4,7},{3,5}}=>2
{{1,6},{2,4},{3,5,7}}=>2
{{1,6},{2,4},{3,5},{7}}=>2
{{1,7},{2,4,6},{3,5}}=>2
{{1},{2,4,6,7},{3,5}}=>2
{{1},{2,4,6},{3,5,7}}=>2
{{1},{2,4,6},{3,5},{7}}=>2
{{1,7},{2,4},{3,5,6}}=>2
{{1},{2,4,7},{3,5,6}}=>2
{{1},{2,4},{3,5,6,7}}=>2
{{1},{2,4},{3,5,6},{7}}=>2
{{1,7},{2,4},{3,5},{6}}=>2
{{1},{2,4,7},{3,5},{6}}=>2
{{1},{2,4},{3,5,7},{6}}=>2
{{1},{2,4},{3,5},{6,7}}=>2
{{1},{2,4},{3,5},{6},{7}}=>2
{{1,6,7},{2,4},{3},{5}}=>1
{{1,6},{2,4,7},{3},{5}}=>2
{{1,6},{2,4},{3,7},{5}}=>2
{{1,6},{2,4},{3},{5,7}}=>2
{{1,6},{2,4},{3},{5},{7}}=>1
{{1,7},{2,4,6},{3},{5}}=>1
{{1},{2,4,6,7},{3},{5}}=>1
{{1},{2,4,6},{3,7},{5}}=>2
{{1},{2,4,6},{3},{5,7}}=>2
{{1},{2,4,6},{3},{5},{7}}=>1
{{1,7},{2,4},{3,6},{5}}=>2
{{1},{2,4,7},{3,6},{5}}=>2
{{1},{2,4},{3,6,7},{5}}=>2
{{1},{2,4},{3,6},{5,7}}=>2
{{1},{2,4},{3,6},{5},{7}}=>2
{{1,7},{2,4},{3},{5,6}}=>1
{{1},{2,4,7},{3},{5,6}}=>1
{{1},{2,4},{3,7},{5,6}}=>2
{{1},{2,4},{3},{5,6,7}}=>1
{{1},{2,4},{3},{5,6},{7}}=>1
{{1,7},{2,4},{3},{5},{6}}=>1
{{1},{2,4,7},{3},{5},{6}}=>1
{{1},{2,4},{3,7},{5},{6}}=>2
{{1},{2,4},{3},{5,7},{6}}=>1
{{1},{2,4},{3},{5},{6,7}}=>1
{{1},{2,4},{3},{5},{6},{7}}=>1
{{1,5,6,7},{2},{3,4}}=>1
{{1,5,6},{2,7},{3,4}}=>2
{{1,5,6},{2},{3,4,7}}=>2
{{1,5,6},{2},{3,4},{7}}=>1
{{1,5,7},{2,6},{3,4}}=>2
{{1,5},{2,6,7},{3,4}}=>2
{{1,5},{2,6},{3,4,7}}=>3
{{1,5},{2,6},{3,4},{7}}=>2
{{1,5,7},{2},{3,4,6}}=>2
{{1,5},{2,7},{3,4,6}}=>2
{{1,5},{2},{3,4,6,7}}=>2
{{1,5},{2},{3,4,6},{7}}=>2
{{1,5,7},{2},{3,4},{6}}=>1
{{1,5},{2,7},{3,4},{6}}=>2
{{1,5},{2},{3,4,7},{6}}=>2
{{1,5},{2},{3,4},{6,7}}=>1
{{1,5},{2},{3,4},{6},{7}}=>1
{{1,6,7},{2,5},{3,4}}=>1
{{1,6},{2,5,7},{3,4}}=>2
{{1,6},{2,5},{3,4,7}}=>2
{{1,6},{2,5},{3,4},{7}}=>1
{{1,7},{2,5,6},{3,4}}=>1
{{1},{2,5,6,7},{3,4}}=>1
{{1},{2,5,6},{3,4,7}}=>2
{{1},{2,5,6},{3,4},{7}}=>1
{{1,7},{2,5},{3,4,6}}=>2
{{1},{2,5,7},{3,4,6}}=>2
{{1},{2,5},{3,4,6,7}}=>2
{{1},{2,5},{3,4,6},{7}}=>2
{{1,7},{2,5},{3,4},{6}}=>1
{{1},{2,5,7},{3,4},{6}}=>1
{{1},{2,5},{3,4,7},{6}}=>2
{{1},{2,5},{3,4},{6,7}}=>1
{{1},{2,5},{3,4},{6},{7}}=>1
{{1,6,7},{2},{3,4,5}}=>1
{{1,6},{2,7},{3,4,5}}=>2
{{1,6},{2},{3,4,5,7}}=>2
{{1,6},{2},{3,4,5},{7}}=>1
{{1,7},{2,6},{3,4,5}}=>1
{{1},{2,6,7},{3,4,5}}=>1
{{1},{2,6},{3,4,5,7}}=>2
{{1},{2,6},{3,4,5},{7}}=>1
{{1,7},{2},{3,4,5,6}}=>1
{{1},{2,7},{3,4,5,6}}=>1
{{1},{2},{3,4,5,6,7}}=>1
{{1},{2},{3,4,5,6},{7}}=>1
{{1,7},{2},{3,4,5},{6}}=>1
{{1},{2,7},{3,4,5},{6}}=>1
{{1},{2},{3,4,5,7},{6}}=>1
{{1},{2},{3,4,5},{6,7}}=>1
{{1},{2},{3,4,5},{6},{7}}=>1
{{1,6,7},{2},{3,4},{5}}=>1
{{1,6},{2,7},{3,4},{5}}=>2
{{1,6},{2},{3,4,7},{5}}=>2
{{1,6},{2},{3,4},{5,7}}=>2
{{1,6},{2},{3,4},{5},{7}}=>1
{{1,7},{2,6},{3,4},{5}}=>1
{{1},{2,6,7},{3,4},{5}}=>1
{{1},{2,6},{3,4,7},{5}}=>2
{{1},{2,6},{3,4},{5,7}}=>2
{{1},{2,6},{3,4},{5},{7}}=>1
{{1,7},{2},{3,4,6},{5}}=>1
{{1},{2,7},{3,4,6},{5}}=>1
{{1},{2},{3,4,6,7},{5}}=>1
{{1},{2},{3,4,6},{5,7}}=>2
{{1},{2},{3,4,6},{5},{7}}=>1
{{1,7},{2},{3,4},{5,6}}=>1
{{1},{2,7},{3,4},{5,6}}=>1
{{1},{2},{3,4,7},{5,6}}=>1
{{1},{2},{3,4},{5,6,7}}=>1
{{1},{2},{3,4},{5,6},{7}}=>1
{{1,7},{2},{3,4},{5},{6}}=>1
{{1},{2,7},{3,4},{5},{6}}=>1
{{1},{2},{3,4,7},{5},{6}}=>1
{{1},{2},{3,4},{5,7},{6}}=>1
{{1},{2},{3,4},{5},{6,7}}=>1
{{1},{2},{3,4},{5},{6},{7}}=>1
{{1,5,6,7},{2},{3},{4}}=>1
{{1,5,6},{2,7},{3},{4}}=>2
{{1,5,6},{2},{3,7},{4}}=>2
{{1,5,6},{2},{3},{4,7}}=>2
{{1,5,6},{2},{3},{4},{7}}=>1
{{1,5,7},{2,6},{3},{4}}=>2
{{1,5},{2,6,7},{3},{4}}=>2
{{1,5},{2,6},{3,7},{4}}=>3
{{1,5},{2,6},{3},{4,7}}=>3
{{1,5},{2,6},{3},{4},{7}}=>2
{{1,5,7},{2},{3,6},{4}}=>2
{{1,5},{2,7},{3,6},{4}}=>2
{{1,5},{2},{3,6,7},{4}}=>2
{{1,5},{2},{3,6},{4,7}}=>3
{{1,5},{2},{3,6},{4},{7}}=>2
{{1,5,7},{2},{3},{4,6}}=>2
{{1,5},{2,7},{3},{4,6}}=>2
{{1,5},{2},{3,7},{4,6}}=>2
{{1,5},{2},{3},{4,6,7}}=>2
{{1,5},{2},{3},{4,6},{7}}=>2
{{1,5,7},{2},{3},{4},{6}}=>1
{{1,5},{2,7},{3},{4},{6}}=>2
{{1,5},{2},{3,7},{4},{6}}=>2
{{1,5},{2},{3},{4,7},{6}}=>2
{{1,5},{2},{3},{4},{6,7}}=>1
{{1,5},{2},{3},{4},{6},{7}}=>1
{{1,6,7},{2,5},{3},{4}}=>1
{{1,6},{2,5,7},{3},{4}}=>2
{{1,6},{2,5},{3,7},{4}}=>2
{{1,6},{2,5},{3},{4,7}}=>2
{{1,6},{2,5},{3},{4},{7}}=>1
{{1,7},{2,5,6},{3},{4}}=>1
{{1},{2,5,6,7},{3},{4}}=>1
{{1},{2,5,6},{3,7},{4}}=>2
{{1},{2,5,6},{3},{4,7}}=>2
{{1},{2,5,6},{3},{4},{7}}=>1
{{1,7},{2,5},{3,6},{4}}=>2
{{1},{2,5,7},{3,6},{4}}=>2
{{1},{2,5},{3,6,7},{4}}=>2
{{1},{2,5},{3,6},{4,7}}=>3
{{1},{2,5},{3,6},{4},{7}}=>2
{{1,7},{2,5},{3},{4,6}}=>2
{{1},{2,5,7},{3},{4,6}}=>2
{{1},{2,5},{3,7},{4,6}}=>2
{{1},{2,5},{3},{4,6,7}}=>2
{{1},{2,5},{3},{4,6},{7}}=>2
{{1,7},{2,5},{3},{4},{6}}=>1
{{1},{2,5,7},{3},{4},{6}}=>1
{{1},{2,5},{3,7},{4},{6}}=>2
{{1},{2,5},{3},{4,7},{6}}=>2
{{1},{2,5},{3},{4},{6,7}}=>1
{{1},{2,5},{3},{4},{6},{7}}=>1
{{1,6,7},{2},{3,5},{4}}=>1
{{1,6},{2,7},{3,5},{4}}=>2
{{1,6},{2},{3,5,7},{4}}=>2
{{1,6},{2},{3,5},{4,7}}=>2
{{1,6},{2},{3,5},{4},{7}}=>1
{{1,7},{2,6},{3,5},{4}}=>1
{{1},{2,6,7},{3,5},{4}}=>1
{{1},{2,6},{3,5,7},{4}}=>2
{{1},{2,6},{3,5},{4,7}}=>2
{{1},{2,6},{3,5},{4},{7}}=>1
{{1,7},{2},{3,5,6},{4}}=>1
{{1},{2,7},{3,5,6},{4}}=>1
{{1},{2},{3,5,6,7},{4}}=>1
{{1},{2},{3,5,6},{4,7}}=>2
{{1},{2},{3,5,6},{4},{7}}=>1
{{1,7},{2},{3,5},{4,6}}=>2
{{1},{2,7},{3,5},{4,6}}=>2
{{1},{2},{3,5,7},{4,6}}=>2
{{1},{2},{3,5},{4,6,7}}=>2
{{1},{2},{3,5},{4,6},{7}}=>2
{{1,7},{2},{3,5},{4},{6}}=>1
{{1},{2,7},{3,5},{4},{6}}=>1
{{1},{2},{3,5,7},{4},{6}}=>1
{{1},{2},{3,5},{4,7},{6}}=>2
{{1},{2},{3,5},{4},{6,7}}=>1
{{1},{2},{3,5},{4},{6},{7}}=>1
{{1,6,7},{2},{3},{4,5}}=>1
{{1,6},{2,7},{3},{4,5}}=>2
{{1,6},{2},{3,7},{4,5}}=>2
{{1,6},{2},{3},{4,5,7}}=>2
{{1,6},{2},{3},{4,5},{7}}=>1
{{1,7},{2,6},{3},{4,5}}=>1
{{1},{2,6,7},{3},{4,5}}=>1
{{1},{2,6},{3,7},{4,5}}=>2
{{1},{2,6},{3},{4,5,7}}=>2
{{1},{2,6},{3},{4,5},{7}}=>1
{{1,7},{2},{3,6},{4,5}}=>1
{{1},{2,7},{3,6},{4,5}}=>1
{{1},{2},{3,6,7},{4,5}}=>1
{{1},{2},{3,6},{4,5,7}}=>2
{{1},{2},{3,6},{4,5},{7}}=>1
{{1,7},{2},{3},{4,5,6}}=>1
{{1},{2,7},{3},{4,5,6}}=>1
{{1},{2},{3,7},{4,5,6}}=>1
{{1},{2},{3},{4,5,6,7}}=>1
{{1},{2},{3},{4,5,6},{7}}=>1
{{1,7},{2},{3},{4,5},{6}}=>1
{{1},{2,7},{3},{4,5},{6}}=>1
{{1},{2},{3,7},{4,5},{6}}=>1
{{1},{2},{3},{4,5,7},{6}}=>1
{{1},{2},{3},{4,5},{6,7}}=>1
{{1},{2},{3},{4,5},{6},{7}}=>1
{{1,6,7},{2},{3},{4},{5}}=>1
{{1,6},{2,7},{3},{4},{5}}=>2
{{1,6},{2},{3,7},{4},{5}}=>2
{{1,6},{2},{3},{4,7},{5}}=>2
{{1,6},{2},{3},{4},{5,7}}=>2
{{1,6},{2},{3},{4},{5},{7}}=>1
{{1,7},{2,6},{3},{4},{5}}=>1
{{1},{2,6,7},{3},{4},{5}}=>1
{{1},{2,6},{3,7},{4},{5}}=>2
{{1},{2,6},{3},{4,7},{5}}=>2
{{1},{2,6},{3},{4},{5,7}}=>2
{{1},{2,6},{3},{4},{5},{7}}=>1
{{1,7},{2},{3,6},{4},{5}}=>1
{{1},{2,7},{3,6},{4},{5}}=>1
{{1},{2},{3,6,7},{4},{5}}=>1
{{1},{2},{3,6},{4,7},{5}}=>2
{{1},{2},{3,6},{4},{5,7}}=>2
{{1},{2},{3,6},{4},{5},{7}}=>1
{{1,7},{2},{3},{4,6},{5}}=>1
{{1},{2,7},{3},{4,6},{5}}=>1
{{1},{2},{3,7},{4,6},{5}}=>1
{{1},{2},{3},{4,6,7},{5}}=>1
{{1},{2},{3},{4,6},{5,7}}=>2
{{1},{2},{3},{4,6},{5},{7}}=>1
{{1,7},{2},{3},{4},{5,6}}=>1
{{1},{2,7},{3},{4},{5,6}}=>1
{{1},{2},{3,7},{4},{5,6}}=>1
{{1},{2},{3},{4,7},{5,6}}=>1
{{1},{2},{3},{4},{5,6,7}}=>1
{{1},{2},{3},{4},{5,6},{7}}=>1
{{1,7},{2},{3},{4},{5},{6}}=>1
{{1},{2,7},{3},{4},{5},{6}}=>1
{{1},{2},{3,7},{4},{5},{6}}=>1
{{1},{2},{3},{4,7},{5},{6}}=>1
{{1},{2},{3},{4},{5,7},{6}}=>1
{{1},{2},{3},{4},{5},{6,7}}=>1
{{1},{2},{3},{4},{5},{6},{7}}=>0
{{1},{2},{3,4,5,6,7,8}}=>1
{{1},{2,4,5,6,7,8},{3}}=>1
{{1},{2,3,5,6,7,8},{4}}=>1
{{1},{2,3,4,6,7,8},{5}}=>1
{{1},{2,3,4,5,7,8},{6}}=>1
{{1},{2,3,4,5,6,7},{8}}=>1
{{1},{2,3,4,5,6,8},{7}}=>1
{{1},{2,3,4,5,6,7,8}}=>1
{{1,2},{3,4,5,6,7,8}}=>1
{{1,4,5,6,7,8},{2},{3}}=>1
{{1,3,5,6,7,8},{2},{4}}=>1
{{1,3,4,5,6,7,8},{2}}=>1
{{1,4,5,6,7,8},{2,3}}=>1
{{1,2,4,5,6,7,8},{3}}=>1
{{1,2,5,6,7,8},{3,4}}=>1
{{1,2,3,5,6,7,8},{4}}=>1
{{1,2,3,6,7,8},{4,5}}=>1
{{1,2,3,4,6,7,8},{5}}=>1
{{1,2,3,4,5,6},{7,8}}=>1
{{1,2,3,4,7,8},{5,6}}=>1
{{1,2,3,4,5,7,8},{6}}=>1
{{1,2,3,4,5,6,7},{8}}=>1
{{1,8},{2,3,4,5,6,7}}=>1
{{1,2,3,4,5,8},{6,7}}=>1
{{1,2,3,4,5,6,8},{7}}=>1
{{1,2,3,4,5,6,7,8}}=>1
{{1,3,5,6,7,8},{2,4}}=>2
{{1,3,4,6,7,8},{2,5}}=>2
{{1,2,4,6,7,8},{3,5}}=>2
{{1,3,4,5,7,8},{2,6}}=>2
{{1,2,4,5,7,8},{3,6}}=>2
{{1,2,3,5,7,8},{4,6}}=>2
{{1,3,4,5,6,8},{2,7}}=>2
{{1,2,4,5,6,8},{3,7}}=>2
{{1,2,3,5,6,8},{4,7}}=>2
{{1,2,3,4,6,8},{5,7}}=>2
{{1,3,4,5,6,7},{2,8}}=>2
{{1,2,4,5,6,7},{3,8}}=>2
{{1,2,3,5,6,7},{4,8}}=>2
{{1,2,3,4,6,7},{5,8}}=>2
{{1,2,3,4,5,7},{6,8}}=>2
{{1,3},{2,4,5,6,7,8}}=>2
{{1,4},{2,3,5,6,7,8}}=>2
{{1,5},{2,3,4,6,7,8}}=>2
{{1,6},{2,3,4,5,7,8}}=>2
{{1,7},{2,3,4,5,6,8}}=>2
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The crossing number of a set partition.
This is the maximal number of chords in the standard representation of a set partition, that mutually cross.
This is the maximal number of chords in the standard representation of a set partition, that mutually cross.
References
[1] Chen, W. Y. C., Deng, E. Y. P., Du, R. R. X., Stanley, R. P., Yan, C. H. Crossings and nestings of matchings and partitions MathSciNet:2272140 arXiv:math/0501230
Code
def statistic(pi): return max(len(p) for p in to_vacillating(pi)) def to_vacillating(pi): """Return the vacillating tableau associated to the set partition pi. INPUT: - pi, a set partition OUTPUT: - a vacillating tableau. EXAMPLES: sage: pi = SetPartition([[1,4,5,7], [2,6],[3]]) sage: to_vacillating(pi) [[], [], [1], [1], [1, 1], [1, 1], [1, 1], [1], [2], [1], [1, 1], [1], [1], [], []] """ T = [StandardTableau([])] perm = pi.to_permutation() mrep = perm.inverse() for j in range(pi.size(), 0, -1): prev = mrep(j) next = perm(j) if j == next: # singleton block T += [T[-1], T[-1]] elif next < j: # maximal element of a non-singleton block # do nothing, then insert prev T += [T[-1], T[-1].schensted_insert(prev)] elif prev > j: # minimal element of a non-singleton block # delete j then do nothing if max(T[-1].entries()) == j: new = T[-1].restrict(j-1) T += [new, new] else: print("ERROR") else: # transient # delete j then insert prev new = T[-1].restrict(j-1) T += [new, new.schensted_insert(prev)] return [t.shape() for t in T[::-1]]
Created
Jun 06, 2015 at 00:13 by Martin Rubey
Updated
May 27, 2021 at 11:26 by Martin Rubey
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!