Identifier
- St000256: Integer partitions ⟶ ℤ
Values
=>
Cc0002;cc-rep
[]=>0
[1]=>0
[2]=>1
[1,1]=>0
[3]=>1
[2,1]=>0
[1,1,1]=>0
[4]=>1
[3,1]=>1
[2,2]=>1
[2,1,1]=>0
[1,1,1,1]=>0
[5]=>1
[4,1]=>1
[3,2]=>1
[3,1,1]=>1
[2,2,1]=>0
[2,1,1,1]=>0
[1,1,1,1,1]=>0
[6]=>1
[5,1]=>1
[4,2]=>2
[4,1,1]=>1
[3,3]=>1
[3,2,1]=>0
[3,1,1,1]=>1
[2,2,2]=>1
[2,2,1,1]=>0
[2,1,1,1,1]=>0
[1,1,1,1,1,1]=>0
[7]=>1
[6,1]=>1
[5,2]=>2
[5,1,1]=>1
[4,3]=>1
[4,2,1]=>1
[4,1,1,1]=>1
[3,3,1]=>1
[3,2,2]=>1
[3,2,1,1]=>0
[3,1,1,1,1]=>1
[2,2,2,1]=>0
[2,2,1,1,1]=>0
[2,1,1,1,1,1]=>0
[1,1,1,1,1,1,1]=>0
[8]=>1
[7,1]=>1
[6,2]=>2
[6,1,1]=>1
[5,3]=>2
[5,2,1]=>1
[5,1,1,1]=>1
[4,4]=>1
[4,3,1]=>1
[4,2,2]=>2
[4,2,1,1]=>1
[4,1,1,1,1]=>1
[3,3,2]=>1
[3,3,1,1]=>1
[3,2,2,1]=>0
[3,2,1,1,1]=>0
[3,1,1,1,1,1]=>1
[2,2,2,2]=>1
[2,2,2,1,1]=>0
[2,2,1,1,1,1]=>0
[2,1,1,1,1,1,1]=>0
[1,1,1,1,1,1,1,1]=>0
[9]=>1
[8,1]=>1
[7,2]=>2
[7,1,1]=>1
[6,3]=>2
[6,2,1]=>1
[6,1,1,1]=>1
[5,4]=>1
[5,3,1]=>2
[5,2,2]=>2
[5,2,1,1]=>1
[5,1,1,1,1]=>1
[4,4,1]=>1
[4,3,2]=>1
[4,3,1,1]=>1
[4,2,2,1]=>1
[4,2,1,1,1]=>1
[4,1,1,1,1,1]=>1
[3,3,3]=>1
[3,3,2,1]=>0
[3,3,1,1,1]=>1
[3,2,2,2]=>1
[3,2,2,1,1]=>0
[3,2,1,1,1,1]=>0
[3,1,1,1,1,1,1]=>1
[2,2,2,2,1]=>0
[2,2,2,1,1,1]=>0
[2,2,1,1,1,1,1]=>0
[2,1,1,1,1,1,1,1]=>0
[1,1,1,1,1,1,1,1,1]=>0
[10]=>1
[9,1]=>1
[8,2]=>2
[8,1,1]=>1
[7,3]=>2
[7,2,1]=>1
[7,1,1,1]=>1
[6,4]=>2
[6,3,1]=>2
[6,2,2]=>2
[6,2,1,1]=>1
[6,1,1,1,1]=>1
[5,5]=>1
[5,4,1]=>1
[5,3,2]=>2
[5,3,1,1]=>2
[5,2,2,1]=>1
[5,2,1,1,1]=>1
[5,1,1,1,1,1]=>1
[4,4,2]=>2
[4,4,1,1]=>1
[4,3,3]=>1
[4,3,2,1]=>0
[4,3,1,1,1]=>1
[4,2,2,2]=>2
[4,2,2,1,1]=>1
[4,2,1,1,1,1]=>1
[4,1,1,1,1,1,1]=>1
[3,3,3,1]=>1
[3,3,2,2]=>1
[3,3,2,1,1]=>0
[3,3,1,1,1,1]=>1
[3,2,2,2,1]=>0
[3,2,2,1,1,1]=>0
[3,2,1,1,1,1,1]=>0
[3,1,1,1,1,1,1,1]=>1
[2,2,2,2,2]=>1
[2,2,2,2,1,1]=>0
[2,2,2,1,1,1,1]=>0
[2,2,1,1,1,1,1,1]=>0
[2,1,1,1,1,1,1,1,1]=>0
[1,1,1,1,1,1,1,1,1,1]=>0
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of parts from which one can substract 2 and still get an integer partition.
References
[1] Tewari, V. V. Kronecker coefficients for some near-rectangular partitions MathSciNet:3320625 arXiv:1403.5327
Code
def statistic(x): x = list(x)+[0] return sum( 1 for i in range(len(x)-1) if x[i]-2 >= x[i+1] )
Created
Jul 14, 2015 at 21:39 by Christian Stump
Updated
Oct 29, 2017 at 16:37 by Martin Rubey
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!