edit this statistic or download as text // json
Identifier
Values
=>
Cc0002;cc-rep
[]=>0 [1]=>0 [2]=>1 [1,1]=>0 [3]=>1 [2,1]=>0 [1,1,1]=>0 [4]=>1 [3,1]=>1 [2,2]=>1 [2,1,1]=>0 [1,1,1,1]=>0 [5]=>1 [4,1]=>1 [3,2]=>1 [3,1,1]=>1 [2,2,1]=>0 [2,1,1,1]=>0 [1,1,1,1,1]=>0 [6]=>1 [5,1]=>1 [4,2]=>2 [4,1,1]=>1 [3,3]=>1 [3,2,1]=>0 [3,1,1,1]=>1 [2,2,2]=>1 [2,2,1,1]=>0 [2,1,1,1,1]=>0 [1,1,1,1,1,1]=>0 [7]=>1 [6,1]=>1 [5,2]=>2 [5,1,1]=>1 [4,3]=>1 [4,2,1]=>1 [4,1,1,1]=>1 [3,3,1]=>1 [3,2,2]=>1 [3,2,1,1]=>0 [3,1,1,1,1]=>1 [2,2,2,1]=>0 [2,2,1,1,1]=>0 [2,1,1,1,1,1]=>0 [1,1,1,1,1,1,1]=>0 [8]=>1 [7,1]=>1 [6,2]=>2 [6,1,1]=>1 [5,3]=>2 [5,2,1]=>1 [5,1,1,1]=>1 [4,4]=>1 [4,3,1]=>1 [4,2,2]=>2 [4,2,1,1]=>1 [4,1,1,1,1]=>1 [3,3,2]=>1 [3,3,1,1]=>1 [3,2,2,1]=>0 [3,2,1,1,1]=>0 [3,1,1,1,1,1]=>1 [2,2,2,2]=>1 [2,2,2,1,1]=>0 [2,2,1,1,1,1]=>0 [2,1,1,1,1,1,1]=>0 [1,1,1,1,1,1,1,1]=>0 [9]=>1 [8,1]=>1 [7,2]=>2 [7,1,1]=>1 [6,3]=>2 [6,2,1]=>1 [6,1,1,1]=>1 [5,4]=>1 [5,3,1]=>2 [5,2,2]=>2 [5,2,1,1]=>1 [5,1,1,1,1]=>1 [4,4,1]=>1 [4,3,2]=>1 [4,3,1,1]=>1 [4,2,2,1]=>1 [4,2,1,1,1]=>1 [4,1,1,1,1,1]=>1 [3,3,3]=>1 [3,3,2,1]=>0 [3,3,1,1,1]=>1 [3,2,2,2]=>1 [3,2,2,1,1]=>0 [3,2,1,1,1,1]=>0 [3,1,1,1,1,1,1]=>1 [2,2,2,2,1]=>0 [2,2,2,1,1,1]=>0 [2,2,1,1,1,1,1]=>0 [2,1,1,1,1,1,1,1]=>0 [1,1,1,1,1,1,1,1,1]=>0 [10]=>1 [9,1]=>1 [8,2]=>2 [8,1,1]=>1 [7,3]=>2 [7,2,1]=>1 [7,1,1,1]=>1 [6,4]=>2 [6,3,1]=>2 [6,2,2]=>2 [6,2,1,1]=>1 [6,1,1,1,1]=>1 [5,5]=>1 [5,4,1]=>1 [5,3,2]=>2 [5,3,1,1]=>2 [5,2,2,1]=>1 [5,2,1,1,1]=>1 [5,1,1,1,1,1]=>1 [4,4,2]=>2 [4,4,1,1]=>1 [4,3,3]=>1 [4,3,2,1]=>0 [4,3,1,1,1]=>1 [4,2,2,2]=>2 [4,2,2,1,1]=>1 [4,2,1,1,1,1]=>1 [4,1,1,1,1,1,1]=>1 [3,3,3,1]=>1 [3,3,2,2]=>1 [3,3,2,1,1]=>0 [3,3,1,1,1,1]=>1 [3,2,2,2,1]=>0 [3,2,2,1,1,1]=>0 [3,2,1,1,1,1,1]=>0 [3,1,1,1,1,1,1,1]=>1 [2,2,2,2,2]=>1 [2,2,2,2,1,1]=>0 [2,2,2,1,1,1,1]=>0 [2,2,1,1,1,1,1,1]=>0 [2,1,1,1,1,1,1,1,1]=>0 [1,1,1,1,1,1,1,1,1,1]=>0
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The number of parts from which one can substract 2 and still get an integer partition.
References
[1] Tewari, V. V. Kronecker coefficients for some near-rectangular partitions MathSciNet:3320625 arXiv:1403.5327
Code
def statistic(x):
    x = list(x)+[0]
    return sum( 1 for i in range(len(x)-1) if x[i]-2 >= x[i+1] )
Created
Jul 14, 2015 at 21:39 by Christian Stump
Updated
Oct 29, 2017 at 16:37 by Martin Rubey