Identifier
- St000278: Integer partitions ⟶ ℤ
Values
=>
Cc0002;cc-rep
[]=>1
[1]=>1
[2]=>1
[1,1]=>1
[3]=>1
[2,1]=>2
[1,1,1]=>1
[4]=>1
[3,1]=>2
[2,2]=>1
[2,1,1]=>3
[1,1,1,1]=>1
[5]=>1
[4,1]=>2
[3,2]=>2
[3,1,1]=>3
[2,2,1]=>3
[2,1,1,1]=>4
[1,1,1,1,1]=>1
[6]=>1
[5,1]=>2
[4,2]=>2
[4,1,1]=>3
[3,3]=>1
[3,2,1]=>6
[3,1,1,1]=>4
[2,2,2]=>1
[2,2,1,1]=>6
[2,1,1,1,1]=>5
[1,1,1,1,1,1]=>1
[7]=>1
[6,1]=>2
[5,2]=>2
[5,1,1]=>3
[4,3]=>2
[4,2,1]=>6
[4,1,1,1]=>4
[3,3,1]=>3
[3,2,2]=>3
[3,2,1,1]=>12
[3,1,1,1,1]=>5
[2,2,2,1]=>4
[2,2,1,1,1]=>10
[2,1,1,1,1,1]=>6
[1,1,1,1,1,1,1]=>1
[8]=>1
[7,1]=>2
[6,2]=>2
[6,1,1]=>3
[5,3]=>2
[5,2,1]=>6
[5,1,1,1]=>4
[4,4]=>1
[4,3,1]=>6
[4,2,2]=>3
[4,2,1,1]=>12
[4,1,1,1,1]=>5
[3,3,2]=>3
[3,3,1,1]=>6
[3,2,2,1]=>12
[3,2,1,1,1]=>20
[3,1,1,1,1,1]=>6
[2,2,2,2]=>1
[2,2,2,1,1]=>10
[2,2,1,1,1,1]=>15
[2,1,1,1,1,1,1]=>7
[1,1,1,1,1,1,1,1]=>1
[9]=>1
[8,1]=>2
[7,2]=>2
[7,1,1]=>3
[6,3]=>2
[6,2,1]=>6
[6,1,1,1]=>4
[5,4]=>2
[5,3,1]=>6
[5,2,2]=>3
[5,2,1,1]=>12
[5,1,1,1,1]=>5
[4,4,1]=>3
[4,3,2]=>6
[4,3,1,1]=>12
[4,2,2,1]=>12
[4,2,1,1,1]=>20
[4,1,1,1,1,1]=>6
[3,3,3]=>1
[3,3,2,1]=>12
[3,3,1,1,1]=>10
[3,2,2,2]=>4
[3,2,2,1,1]=>30
[3,2,1,1,1,1]=>30
[3,1,1,1,1,1,1]=>7
[2,2,2,2,1]=>5
[2,2,2,1,1,1]=>20
[2,2,1,1,1,1,1]=>21
[2,1,1,1,1,1,1,1]=>8
[1,1,1,1,1,1,1,1,1]=>1
[10]=>1
[9,1]=>2
[8,2]=>2
[8,1,1]=>3
[7,3]=>2
[7,2,1]=>6
[7,1,1,1]=>4
[6,4]=>2
[6,3,1]=>6
[6,2,2]=>3
[6,2,1,1]=>12
[6,1,1,1,1]=>5
[5,5]=>1
[5,4,1]=>6
[5,3,2]=>6
[5,3,1,1]=>12
[5,2,2,1]=>12
[5,2,1,1,1]=>20
[5,1,1,1,1,1]=>6
[4,4,2]=>3
[4,4,1,1]=>6
[4,3,3]=>3
[4,3,2,1]=>24
[4,3,1,1,1]=>20
[4,2,2,2]=>4
[4,2,2,1,1]=>30
[4,2,1,1,1,1]=>30
[4,1,1,1,1,1,1]=>7
[3,3,3,1]=>4
[3,3,2,2]=>6
[3,3,2,1,1]=>30
[3,3,1,1,1,1]=>15
[3,2,2,2,1]=>20
[3,2,2,1,1,1]=>60
[3,2,1,1,1,1,1]=>42
[3,1,1,1,1,1,1,1]=>8
[2,2,2,2,2]=>1
[2,2,2,2,1,1]=>15
[2,2,2,1,1,1,1]=>35
[2,2,1,1,1,1,1,1]=>28
[2,1,1,1,1,1,1,1,1]=>9
[1,1,1,1,1,1,1,1,1,1]=>1
[11]=>1
[10,1]=>2
[9,2]=>2
[9,1,1]=>3
[8,3]=>2
[8,2,1]=>6
[8,1,1,1]=>4
[7,4]=>2
[7,3,1]=>6
[7,2,2]=>3
[7,2,1,1]=>12
[7,1,1,1,1]=>5
[6,5]=>2
[6,4,1]=>6
[6,3,2]=>6
[6,3,1,1]=>12
[6,2,2,1]=>12
[6,2,1,1,1]=>20
[6,1,1,1,1,1]=>6
[5,5,1]=>3
[5,4,2]=>6
[5,4,1,1]=>12
[5,3,3]=>3
[5,3,2,1]=>24
[5,3,1,1,1]=>20
[5,2,2,2]=>4
[5,2,2,1,1]=>30
[5,2,1,1,1,1]=>30
[5,1,1,1,1,1,1]=>7
[4,4,3]=>3
[4,4,2,1]=>12
[4,4,1,1,1]=>10
[4,3,3,1]=>12
[4,3,2,2]=>12
[4,3,2,1,1]=>60
[4,3,1,1,1,1]=>30
[4,2,2,2,1]=>20
[4,2,2,1,1,1]=>60
[4,2,1,1,1,1,1]=>42
[4,1,1,1,1,1,1,1]=>8
[3,3,3,2]=>4
[3,3,3,1,1]=>10
[3,3,2,2,1]=>30
[3,3,2,1,1,1]=>60
[3,3,1,1,1,1,1]=>21
[3,2,2,2,2]=>5
[3,2,2,2,1,1]=>60
[3,2,2,1,1,1,1]=>105
[3,2,1,1,1,1,1,1]=>56
[3,1,1,1,1,1,1,1,1]=>9
[2,2,2,2,2,1]=>6
[2,2,2,2,1,1,1]=>35
[2,2,2,1,1,1,1,1]=>56
[2,2,1,1,1,1,1,1,1]=>36
[2,1,1,1,1,1,1,1,1,1]=>10
[1,1,1,1,1,1,1,1,1,1,1]=>1
[12]=>1
[11,1]=>2
[10,2]=>2
[10,1,1]=>3
[9,3]=>2
[9,2,1]=>6
[9,1,1,1]=>4
[8,4]=>2
[8,3,1]=>6
[8,2,2]=>3
[8,2,1,1]=>12
[8,1,1,1,1]=>5
[7,5]=>2
[7,4,1]=>6
[7,3,2]=>6
[7,3,1,1]=>12
[7,2,2,1]=>12
[7,2,1,1,1]=>20
[7,1,1,1,1,1]=>6
[6,6]=>1
[6,5,1]=>6
[6,4,2]=>6
[6,4,1,1]=>12
[6,3,3]=>3
[6,3,2,1]=>24
[6,3,1,1,1]=>20
[6,2,2,2]=>4
[6,2,2,1,1]=>30
[6,2,1,1,1,1]=>30
[6,1,1,1,1,1,1]=>7
[5,5,2]=>3
[5,5,1,1]=>6
[5,4,3]=>6
[5,4,2,1]=>24
[5,4,1,1,1]=>20
[5,3,3,1]=>12
[5,3,2,2]=>12
[5,3,2,1,1]=>60
[5,3,1,1,1,1]=>30
[5,2,2,2,1]=>20
[5,2,2,1,1,1]=>60
[5,2,1,1,1,1,1]=>42
[5,1,1,1,1,1,1,1]=>8
[4,4,4]=>1
[4,4,3,1]=>12
[4,4,2,2]=>6
[4,4,2,1,1]=>30
[4,4,1,1,1,1]=>15
[4,3,3,2]=>12
[4,3,3,1,1]=>30
[4,3,2,2,1]=>60
[4,3,2,1,1,1]=>120
[4,3,1,1,1,1,1]=>42
[4,2,2,2,2]=>5
[4,2,2,2,1,1]=>60
[4,2,2,1,1,1,1]=>105
[4,2,1,1,1,1,1,1]=>56
[4,1,1,1,1,1,1,1,1]=>9
[3,3,3,3]=>1
[3,3,3,2,1]=>20
[3,3,3,1,1,1]=>20
[3,3,2,2,2]=>10
[3,3,2,2,1,1]=>90
[3,3,2,1,1,1,1]=>105
[3,3,1,1,1,1,1,1]=>28
[3,2,2,2,2,1]=>30
[3,2,2,2,1,1,1]=>140
[3,2,2,1,1,1,1,1]=>168
[3,2,1,1,1,1,1,1,1]=>72
[3,1,1,1,1,1,1,1,1,1]=>10
[2,2,2,2,2,2]=>1
[2,2,2,2,2,1,1]=>21
[2,2,2,2,1,1,1,1]=>70
[2,2,2,1,1,1,1,1,1]=>84
[2,2,1,1,1,1,1,1,1,1]=>45
[2,1,1,1,1,1,1,1,1,1,1]=>11
[1,1,1,1,1,1,1,1,1,1,1,1]=>1
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The size of the preimage of the map 'to partition' from Integer compositions to Integer partitions.
This is the multinomial of the multiplicities of the parts, see [1].
This is the same as $m_\lambda(x_1,\dotsc,x_k)$ evaluated at $x_1=\dotsb=x_k=1$,
where $k$ is the number of parts of $\lambda$.
An explicit formula is $\frac{k!}{m_1(\lambda)! m_2(\lambda)! \dotsb m_k(\lambda) !}$
where $m_i(\lambda)$ is the number of parts of $\lambda$ equal to $i$.
This is the multinomial of the multiplicities of the parts, see [1].
This is the same as $m_\lambda(x_1,\dotsc,x_k)$ evaluated at $x_1=\dotsb=x_k=1$,
where $k$ is the number of parts of $\lambda$.
An explicit formula is $\frac{k!}{m_1(\lambda)! m_2(\lambda)! \dotsb m_k(\lambda) !}$
where $m_i(\lambda)$ is the number of parts of $\lambda$ equal to $i$.
References
[1] Preferred multisets: triangle of numbers refining A007318 using format described in A036038. OEIS:A048996
Code
def statistic(la): return multinomial(la.to_exp()) #CodeLanguage: Sage def to_partition(elt): from sage.combinat.partition import Partition return Partition(sorted(elt, reverse=True)) @cached_function def preimages(level): print "computing preimages for level", level result = dict() for el in Compositions(level): image = to_partition(el) result[image] = result.get(image, 0) + 1 return result def statistic(x): return preimages(x.size()).get(x, 0)
Created
Sep 11, 2015 at 22:04 by Martin Rubey
Updated
Nov 29, 2023 at 14:21 by Martin Rubey
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!