edit this statistic or download as text // json
Identifier
Values
=>
Cc0002;cc-rep
[]=>1 [1]=>1 [2]=>1 [1,1]=>1 [3]=>1 [2,1]=>2 [1,1,1]=>1 [4]=>1 [3,1]=>2 [2,2]=>1 [2,1,1]=>3 [1,1,1,1]=>1 [5]=>1 [4,1]=>2 [3,2]=>2 [3,1,1]=>3 [2,2,1]=>3 [2,1,1,1]=>4 [1,1,1,1,1]=>1 [6]=>1 [5,1]=>2 [4,2]=>2 [4,1,1]=>3 [3,3]=>1 [3,2,1]=>6 [3,1,1,1]=>4 [2,2,2]=>1 [2,2,1,1]=>6 [2,1,1,1,1]=>5 [1,1,1,1,1,1]=>1 [7]=>1 [6,1]=>2 [5,2]=>2 [5,1,1]=>3 [4,3]=>2 [4,2,1]=>6 [4,1,1,1]=>4 [3,3,1]=>3 [3,2,2]=>3 [3,2,1,1]=>12 [3,1,1,1,1]=>5 [2,2,2,1]=>4 [2,2,1,1,1]=>10 [2,1,1,1,1,1]=>6 [1,1,1,1,1,1,1]=>1 [8]=>1 [7,1]=>2 [6,2]=>2 [6,1,1]=>3 [5,3]=>2 [5,2,1]=>6 [5,1,1,1]=>4 [4,4]=>1 [4,3,1]=>6 [4,2,2]=>3 [4,2,1,1]=>12 [4,1,1,1,1]=>5 [3,3,2]=>3 [3,3,1,1]=>6 [3,2,2,1]=>12 [3,2,1,1,1]=>20 [3,1,1,1,1,1]=>6 [2,2,2,2]=>1 [2,2,2,1,1]=>10 [2,2,1,1,1,1]=>15 [2,1,1,1,1,1,1]=>7 [1,1,1,1,1,1,1,1]=>1 [9]=>1 [8,1]=>2 [7,2]=>2 [7,1,1]=>3 [6,3]=>2 [6,2,1]=>6 [6,1,1,1]=>4 [5,4]=>2 [5,3,1]=>6 [5,2,2]=>3 [5,2,1,1]=>12 [5,1,1,1,1]=>5 [4,4,1]=>3 [4,3,2]=>6 [4,3,1,1]=>12 [4,2,2,1]=>12 [4,2,1,1,1]=>20 [4,1,1,1,1,1]=>6 [3,3,3]=>1 [3,3,2,1]=>12 [3,3,1,1,1]=>10 [3,2,2,2]=>4 [3,2,2,1,1]=>30 [3,2,1,1,1,1]=>30 [3,1,1,1,1,1,1]=>7 [2,2,2,2,1]=>5 [2,2,2,1,1,1]=>20 [2,2,1,1,1,1,1]=>21 [2,1,1,1,1,1,1,1]=>8 [1,1,1,1,1,1,1,1,1]=>1 [10]=>1 [9,1]=>2 [8,2]=>2 [8,1,1]=>3 [7,3]=>2 [7,2,1]=>6 [7,1,1,1]=>4 [6,4]=>2 [6,3,1]=>6 [6,2,2]=>3 [6,2,1,1]=>12 [6,1,1,1,1]=>5 [5,5]=>1 [5,4,1]=>6 [5,3,2]=>6 [5,3,1,1]=>12 [5,2,2,1]=>12 [5,2,1,1,1]=>20 [5,1,1,1,1,1]=>6 [4,4,2]=>3 [4,4,1,1]=>6 [4,3,3]=>3 [4,3,2,1]=>24 [4,3,1,1,1]=>20 [4,2,2,2]=>4 [4,2,2,1,1]=>30 [4,2,1,1,1,1]=>30 [4,1,1,1,1,1,1]=>7 [3,3,3,1]=>4 [3,3,2,2]=>6 [3,3,2,1,1]=>30 [3,3,1,1,1,1]=>15 [3,2,2,2,1]=>20 [3,2,2,1,1,1]=>60 [3,2,1,1,1,1,1]=>42 [3,1,1,1,1,1,1,1]=>8 [2,2,2,2,2]=>1 [2,2,2,2,1,1]=>15 [2,2,2,1,1,1,1]=>35 [2,2,1,1,1,1,1,1]=>28 [2,1,1,1,1,1,1,1,1]=>9 [1,1,1,1,1,1,1,1,1,1]=>1 [11]=>1 [10,1]=>2 [9,2]=>2 [9,1,1]=>3 [8,3]=>2 [8,2,1]=>6 [8,1,1,1]=>4 [7,4]=>2 [7,3,1]=>6 [7,2,2]=>3 [7,2,1,1]=>12 [7,1,1,1,1]=>5 [6,5]=>2 [6,4,1]=>6 [6,3,2]=>6 [6,3,1,1]=>12 [6,2,2,1]=>12 [6,2,1,1,1]=>20 [6,1,1,1,1,1]=>6 [5,5,1]=>3 [5,4,2]=>6 [5,4,1,1]=>12 [5,3,3]=>3 [5,3,2,1]=>24 [5,3,1,1,1]=>20 [5,2,2,2]=>4 [5,2,2,1,1]=>30 [5,2,1,1,1,1]=>30 [5,1,1,1,1,1,1]=>7 [4,4,3]=>3 [4,4,2,1]=>12 [4,4,1,1,1]=>10 [4,3,3,1]=>12 [4,3,2,2]=>12 [4,3,2,1,1]=>60 [4,3,1,1,1,1]=>30 [4,2,2,2,1]=>20 [4,2,2,1,1,1]=>60 [4,2,1,1,1,1,1]=>42 [4,1,1,1,1,1,1,1]=>8 [3,3,3,2]=>4 [3,3,3,1,1]=>10 [3,3,2,2,1]=>30 [3,3,2,1,1,1]=>60 [3,3,1,1,1,1,1]=>21 [3,2,2,2,2]=>5 [3,2,2,2,1,1]=>60 [3,2,2,1,1,1,1]=>105 [3,2,1,1,1,1,1,1]=>56 [3,1,1,1,1,1,1,1,1]=>9 [2,2,2,2,2,1]=>6 [2,2,2,2,1,1,1]=>35 [2,2,2,1,1,1,1,1]=>56 [2,2,1,1,1,1,1,1,1]=>36 [2,1,1,1,1,1,1,1,1,1]=>10 [1,1,1,1,1,1,1,1,1,1,1]=>1 [12]=>1 [11,1]=>2 [10,2]=>2 [10,1,1]=>3 [9,3]=>2 [9,2,1]=>6 [9,1,1,1]=>4 [8,4]=>2 [8,3,1]=>6 [8,2,2]=>3 [8,2,1,1]=>12 [8,1,1,1,1]=>5 [7,5]=>2 [7,4,1]=>6 [7,3,2]=>6 [7,3,1,1]=>12 [7,2,2,1]=>12 [7,2,1,1,1]=>20 [7,1,1,1,1,1]=>6 [6,6]=>1 [6,5,1]=>6 [6,4,2]=>6 [6,4,1,1]=>12 [6,3,3]=>3 [6,3,2,1]=>24 [6,3,1,1,1]=>20 [6,2,2,2]=>4 [6,2,2,1,1]=>30 [6,2,1,1,1,1]=>30 [6,1,1,1,1,1,1]=>7 [5,5,2]=>3 [5,5,1,1]=>6 [5,4,3]=>6 [5,4,2,1]=>24 [5,4,1,1,1]=>20 [5,3,3,1]=>12 [5,3,2,2]=>12 [5,3,2,1,1]=>60 [5,3,1,1,1,1]=>30 [5,2,2,2,1]=>20 [5,2,2,1,1,1]=>60 [5,2,1,1,1,1,1]=>42 [5,1,1,1,1,1,1,1]=>8 [4,4,4]=>1 [4,4,3,1]=>12 [4,4,2,2]=>6 [4,4,2,1,1]=>30 [4,4,1,1,1,1]=>15 [4,3,3,2]=>12 [4,3,3,1,1]=>30 [4,3,2,2,1]=>60 [4,3,2,1,1,1]=>120 [4,3,1,1,1,1,1]=>42 [4,2,2,2,2]=>5 [4,2,2,2,1,1]=>60 [4,2,2,1,1,1,1]=>105 [4,2,1,1,1,1,1,1]=>56 [4,1,1,1,1,1,1,1,1]=>9 [3,3,3,3]=>1 [3,3,3,2,1]=>20 [3,3,3,1,1,1]=>20 [3,3,2,2,2]=>10 [3,3,2,2,1,1]=>90 [3,3,2,1,1,1,1]=>105 [3,3,1,1,1,1,1,1]=>28 [3,2,2,2,2,1]=>30 [3,2,2,2,1,1,1]=>140 [3,2,2,1,1,1,1,1]=>168 [3,2,1,1,1,1,1,1,1]=>72 [3,1,1,1,1,1,1,1,1,1]=>10 [2,2,2,2,2,2]=>1 [2,2,2,2,2,1,1]=>21 [2,2,2,2,1,1,1,1]=>70 [2,2,2,1,1,1,1,1,1]=>84 [2,2,1,1,1,1,1,1,1,1]=>45 [2,1,1,1,1,1,1,1,1,1,1]=>11 [1,1,1,1,1,1,1,1,1,1,1,1]=>1
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The size of the preimage of the map 'to partition' from Integer compositions to Integer partitions.
This is the multinomial of the multiplicities of the parts, see [1].
This is the same as $m_\lambda(x_1,\dotsc,x_k)$ evaluated at $x_1=\dotsb=x_k=1$,
where $k$ is the number of parts of $\lambda$.
An explicit formula is $\frac{k!}{m_1(\lambda)! m_2(\lambda)! \dotsb m_k(\lambda) !}$
where $m_i(\lambda)$ is the number of parts of $\lambda$ equal to $i$.
References
[1] Preferred multisets: triangle of numbers refining A007318 using format described in A036038. OEIS:A048996
Code
def statistic(la):
    return multinomial(la.to_exp())

#CodeLanguage: Sage
def to_partition(elt):
    from sage.combinat.partition import Partition
    return Partition(sorted(elt, reverse=True))

@cached_function
def preimages(level):
    print "computing preimages for level", level
    result = dict()
    for el in Compositions(level):
        image = to_partition(el)
        result[image] = result.get(image, 0) + 1
    return result

def statistic(x):
    return preimages(x.size()).get(x, 0)

Created
Sep 11, 2015 at 22:04 by Martin Rubey
Updated
Nov 29, 2023 at 14:21 by Martin Rubey