Values
=>
Cc0020;cc-rep
([],1)=>1
([],2)=>1
([(0,1)],2)=>2
([],3)=>1
([(1,2)],3)=>2
([(0,2),(1,2)],3)=>3
([(0,1),(0,2),(1,2)],3)=>2
([],4)=>1
([(2,3)],4)=>2
([(1,3),(2,3)],4)=>3
([(0,3),(1,3),(2,3)],4)=>4
([(0,3),(1,2)],4)=>2
([(0,3),(1,2),(2,3)],4)=>4
([(1,2),(1,3),(2,3)],4)=>2
([(0,3),(1,2),(1,3),(2,3)],4)=>3
([(0,2),(0,3),(1,2),(1,3)],4)=>3
([(0,2),(0,3),(1,2),(1,3),(2,3)],4)=>3
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)=>2
([],5)=>1
([(3,4)],5)=>2
([(2,4),(3,4)],5)=>3
([(1,4),(2,4),(3,4)],5)=>4
([(0,4),(1,4),(2,4),(3,4)],5)=>5
([(1,4),(2,3)],5)=>2
([(1,4),(2,3),(3,4)],5)=>4
([(0,1),(2,4),(3,4)],5)=>3
([(2,3),(2,4),(3,4)],5)=>2
([(0,4),(1,4),(2,3),(3,4)],5)=>6
([(1,4),(2,3),(2,4),(3,4)],5)=>3
([(0,4),(1,4),(2,3),(2,4),(3,4)],5)=>4
([(1,3),(1,4),(2,3),(2,4)],5)=>3
([(0,4),(1,2),(1,3),(2,4),(3,4)],5)=>5
([(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>3
([(0,4),(1,3),(2,3),(2,4),(3,4)],5)=>4
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>4
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)=>4
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>4
([(0,4),(1,3),(2,3),(2,4)],5)=>5
([(0,1),(2,3),(2,4),(3,4)],5)=>2
([(0,3),(1,2),(1,4),(2,4),(3,4)],5)=>4
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)=>3
([(0,3),(0,4),(1,2),(1,4),(2,3)],5)=>4
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)=>4
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)=>4
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)=>4
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>2
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>3
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>3
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)=>3
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)=>3
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>3
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)=>2
([],6)=>1
([(4,5)],6)=>2
([(3,5),(4,5)],6)=>3
([(2,5),(3,5),(4,5)],6)=>4
([(1,5),(2,5),(3,5),(4,5)],6)=>5
([(0,5),(1,5),(2,5),(3,5),(4,5)],6)=>6
([(2,5),(3,4)],6)=>2
([(2,5),(3,4),(4,5)],6)=>4
([(1,2),(3,5),(4,5)],6)=>3
([(3,4),(3,5),(4,5)],6)=>2
([(1,5),(2,5),(3,4),(4,5)],6)=>6
([(0,1),(2,5),(3,5),(4,5)],6)=>4
([(2,5),(3,4),(3,5),(4,5)],6)=>3
([(0,5),(1,5),(2,5),(3,4),(4,5)],6)=>8
([(1,5),(2,5),(3,4),(3,5),(4,5)],6)=>4
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)=>5
([(2,4),(2,5),(3,4),(3,5)],6)=>3
([(0,5),(1,5),(2,4),(3,4)],6)=>3
([(1,5),(2,3),(2,4),(3,5),(4,5)],6)=>5
([(0,5),(1,5),(2,3),(3,4),(4,5)],6)=>8
([(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>3
([(1,5),(2,4),(3,4),(3,5),(4,5)],6)=>4
([(0,5),(1,5),(2,4),(3,4),(4,5)],6)=>7
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6)=>7
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>4
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6)=>6
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>5
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)=>4
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)=>6
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)=>6
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>4
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>5
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>5
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)=>5
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>5
([(0,5),(1,4),(2,3)],6)=>2
([(1,5),(2,4),(3,4),(3,5)],6)=>5
([(0,1),(2,5),(3,4),(4,5)],6)=>4
([(1,2),(3,4),(3,5),(4,5)],6)=>2
([(0,5),(1,4),(2,3),(3,5),(4,5)],6)=>8
([(1,4),(2,3),(2,5),(3,5),(4,5)],6)=>4
([(0,1),(2,5),(3,4),(3,5),(4,5)],6)=>3
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)=>6
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)=>3
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)=>4
([(1,4),(1,5),(2,3),(2,5),(3,4)],6)=>4
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6)=>6
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)=>4
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6)=>7
([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>4
([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6)=>4
([(0,5),(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)=>6
([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>6
([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)=>4
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)=>5
([(0,5),(1,4),(2,3),(2,4),(3,5)],6)=>6
([(0,1),(2,4),(2,5),(3,4),(3,5)],6)=>3
([(0,5),(1,5),(2,3),(2,4),(3,4)],6)=>3
([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6)=>7
([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5)],6)=>5
([(0,4),(1,2),(2,5),(3,4),(3,5),(4,5)],6)=>5
([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>3
([(0,4),(1,4),(2,3),(2,5),(3,5),(4,5)],6)=>6
([(0,3),(0,4),(1,2),(1,5),(2,5),(3,5),(4,5)],6)=>5
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,5),(4,5)],6)=>6
([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5),(4,5)],6)=>4
([(0,1),(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>4
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>2
([(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>6
([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>3
([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>4
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6)=>6
([(0,3),(0,5),(1,3),(1,5),(2,4),(2,5),(3,4),(4,5)],6)=>6
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>6
([(0,5),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>6
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>6
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6)=>6
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>5
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>3
([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>4
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>4
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>4
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>4
([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)=>6
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>3
([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,5),(4,5)],6)=>5
([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)=>3
([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)=>4
([(0,4),(0,5),(1,2),(1,3),(2,5),(3,4)],6)=>5
([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6)=>6
([(0,5),(1,2),(1,4),(2,3),(3,4),(3,5),(4,5)],6)=>5
([(0,1),(0,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6)=>5
([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>5
([(0,5),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5)],6)=>7
([(0,1),(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>6
([(0,4),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)=>5
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,5),(4,5)],6)=>5
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)=>6
([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6)=>5
([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6)=>5
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5)],6)=>5
([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>5
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>5
([(0,5),(1,2),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>5
([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>3
([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>4
([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>4
([(0,4),(0,5),(1,2),(1,4),(2,3),(2,5),(3,4),(3,5),(4,5)],6)=>5
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>4
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>5
([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>4
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6)=>4
([(0,1),(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>4
([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>4
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)=>4
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>4
([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6)=>2
([(0,2),(1,4),(1,5),(2,3),(3,4),(3,5),(4,5)],6)=>5
([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(4,5)],6)=>4
([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>2
([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>4
([(0,1),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>4
([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>3
([(0,4),(0,5),(1,2),(1,3),(2,3),(2,5),(3,4),(4,5)],6)=>4
([(0,4),(0,5),(1,2),(1,3),(1,4),(2,3),(2,5),(3,5),(4,5)],6)=>4
([(0,3),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>4
([(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>4
([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>4
([(0,3),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>4
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)=>3
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>3
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4)],6)=>5
([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>4
([(0,3),(0,4),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)=>4
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6)=>4
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,4)],6)=>4
([(0,1),(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>4
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>4
([(0,1),(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>4
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>4
([(0,2),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6)=>4
([(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>4
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>4
([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>4
([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>2
([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>3
([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>3
([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>3
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>4
([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6)=>3
([(0,1),(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>3
([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6)=>3
([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6)=>3
([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>3
([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>3
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)=>2
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of nonisomorphic vertex-induced subtrees.
References
[1] Mubayi, D., Verstraete, J. The number of trees in a graph arXiv:1511.07274
Code
def statistic(G): V = G.vertices() indSubG = set() for subV in Subsets(V): subG = G.subgraph(subV) if subG.is_tree(): indSubG.add(subG.canonical_label().copy(immutable=True)) return len(indSubG)
Created
Nov 24, 2015 at 17:41 by Christian Stump
Updated
Nov 25, 2015 at 11:11 by Christian Stump
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!