edit this statistic or download as text // json
Identifier
Values
=>
Cc0002;cc-rep
[1]=>0 [2]=>1 [1,1]=>0 [3]=>2 [2,1]=>1 [1,1,1]=>0 [4]=>3 [3,1]=>2 [2,2]=>1 [2,1,1]=>1 [1,1,1,1]=>0 [5]=>4 [4,1]=>3 [3,2]=>2 [3,1,1]=>2 [2,2,1]=>1 [2,1,1,1]=>1 [1,1,1,1,1]=>0 [6]=>5 [5,1]=>4 [4,2]=>3 [4,1,1]=>3 [3,3]=>3 [3,2,1]=>2 [3,1,1,1]=>2 [2,2,2]=>1 [2,2,1,1]=>1 [2,1,1,1,1]=>1 [1,1,1,1,1,1]=>0 [7]=>6 [6,1]=>5 [5,2]=>4 [5,1,1]=>4 [4,3]=>4 [4,2,1]=>3 [4,1,1,1]=>3 [3,3,1]=>3 [3,2,2]=>2 [3,2,1,1]=>2 [3,1,1,1,1]=>2 [2,2,2,1]=>1 [2,2,1,1,1]=>1 [2,1,1,1,1,1]=>1 [1,1,1,1,1,1,1]=>0 [8]=>7 [7,1]=>6 [6,2]=>5 [6,1,1]=>5 [5,3]=>5 [5,2,1]=>4 [5,1,1,1]=>4 [4,4]=>5 [4,3,1]=>4 [4,2,2]=>3 [4,2,1,1]=>3 [4,1,1,1,1]=>3 [3,3,2]=>3 [3,3,1,1]=>3 [3,2,2,1]=>2 [3,2,1,1,1]=>2 [3,1,1,1,1,1]=>2 [2,2,2,2]=>1 [2,2,2,1,1]=>1 [2,2,1,1,1,1]=>1 [2,1,1,1,1,1,1]=>1 [1,1,1,1,1,1,1,1]=>0 [9]=>8 [8,1]=>7 [7,2]=>6 [7,1,1]=>6 [6,3]=>6 [6,2,1]=>5 [6,1,1,1]=>5 [5,4]=>6 [5,3,1]=>5 [5,2,2]=>4 [5,2,1,1]=>4 [5,1,1,1,1]=>4 [4,4,1]=>5 [4,3,2]=>4 [4,3,1,1]=>4 [4,2,2,1]=>3 [4,2,1,1,1]=>3 [4,1,1,1,1,1]=>3 [3,3,3]=>3 [3,3,2,1]=>3 [3,3,1,1,1]=>3 [3,2,2,2]=>2 [3,2,2,1,1]=>2 [3,2,1,1,1,1]=>2 [3,1,1,1,1,1,1]=>2 [2,2,2,2,1]=>1 [2,2,2,1,1,1]=>1 [2,2,1,1,1,1,1]=>1 [2,1,1,1,1,1,1,1]=>1 [1,1,1,1,1,1,1,1,1]=>0 [10]=>9 [9,1]=>8 [8,2]=>7 [8,1,1]=>7 [7,3]=>7 [7,2,1]=>6 [7,1,1,1]=>6 [6,4]=>7 [6,3,1]=>6 [6,2,2]=>5 [6,2,1,1]=>5 [6,1,1,1,1]=>5 [5,5]=>7 [5,4,1]=>6 [5,3,2]=>5 [5,3,1,1]=>5 [5,2,2,1]=>4 [5,2,1,1,1]=>4 [5,1,1,1,1,1]=>4 [4,4,2]=>5 [4,4,1,1]=>5 [4,3,3]=>4 [4,3,2,1]=>4 [4,3,1,1,1]=>4 [4,2,2,2]=>3 [4,2,2,1,1]=>3 [4,2,1,1,1,1]=>3 [4,1,1,1,1,1,1]=>3 [3,3,3,1]=>3 [3,3,2,2]=>3 [3,3,2,1,1]=>3 [3,3,1,1,1,1]=>3 [3,2,2,2,1]=>2 [3,2,2,1,1,1]=>2 [3,2,1,1,1,1,1]=>2 [3,1,1,1,1,1,1,1]=>2 [2,2,2,2,2]=>1 [2,2,2,2,1,1]=>1 [2,2,2,1,1,1,1]=>1 [2,2,1,1,1,1,1,1]=>1 [2,1,1,1,1,1,1,1,1]=>1 [1,1,1,1,1,1,1,1,1,1]=>0
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The dinv adjustment of an integer partition.
The Ferrers shape of an integer partition $\lambda = (\lambda_1,\ldots,\lambda_k)$ can be decomposed into border strips. For $0 \leq j < \lambda_1$ let $n_j$ be the length of the border strip starting at $(\lambda_1-j,0)$.
The dinv adjustment is then defined by
$$\sum_{j:n_j > 0}(\lambda_1-1-j).$$
The following example is taken from Appendix B in [2]: Let $\lambda=(5,5,4,4,2,1)$. Removing the border strips successively yields the sequence of partitions
$$(5,5,4,4,2,1),(4,3,3,1),(2,2),(1),(),$$
and we obtain $(n_0,\ldots,n_4) = (10,7,0,3,1)$.
The dinv adjustment is thus $4+3+1+0 = 8$.
References
[1] , Loehr, N. A., Warrington, G. S. Nested quantum Dyck paths and $\nabla (s_\lambda )$ MathSciNet:2418288 arXiv:0705.4608
[2] Haglund, J. The $q$,$t$-Catalan numbers and the space of diagonal harmonics MathSciNet:2371044
Code
def remove_border_strip(L):
    return Partition( part-1 for part in L[1:] if part > 1 )

def border_strip_decomposition(L):
    decomp = []
    while len(L) > 0:
        decomp.append(L)
        L = remove_border_strip(L)
    return decomp

def length_seq(L):
    strip_seq = border_strip_decomposition(L) + [[]]
    len_seq = [0]*(L[0])
    for j in range(len(strip_seq)-1):
        len_seq[L[0]-strip_seq[j][0]] = sum(strip_seq[j])-sum(strip_seq[j+1])
    return len_seq

def statistic(L):
    len_seq = length_seq(L)
    return sum( L[0]-1-j for j in range(len(len_seq)) if len_seq[j] > 0 )
Created
Dec 08, 2015 at 17:40 by Christian Stump
Updated
Dec 17, 2015 at 12:53 by Christian Stump