Identifier
- St000329: Dyck paths ⟶ ℤ
Values
=>
Cc0005;cc-rep
[1,0]=>0
[1,0,1,0]=>0
[1,1,0,0]=>1
[1,0,1,0,1,0]=>0
[1,0,1,1,0,0]=>1
[1,1,0,0,1,0]=>1
[1,1,0,1,0,0]=>2
[1,1,1,0,0,0]=>1
[1,0,1,0,1,0,1,0]=>0
[1,0,1,0,1,1,0,0]=>1
[1,0,1,1,0,0,1,0]=>1
[1,0,1,1,0,1,0,0]=>2
[1,0,1,1,1,0,0,0]=>1
[1,1,0,0,1,0,1,0]=>1
[1,1,0,0,1,1,0,0]=>2
[1,1,0,1,0,0,1,0]=>2
[1,1,0,1,0,1,0,0]=>3
[1,1,0,1,1,0,0,0]=>2
[1,1,1,0,0,0,1,0]=>1
[1,1,1,0,0,1,0,0]=>2
[1,1,1,0,1,0,0,0]=>1
[1,1,1,1,0,0,0,0]=>2
[1,0,1,0,1,0,1,0,1,0]=>0
[1,0,1,0,1,0,1,1,0,0]=>1
[1,0,1,0,1,1,0,0,1,0]=>1
[1,0,1,0,1,1,0,1,0,0]=>2
[1,0,1,0,1,1,1,0,0,0]=>1
[1,0,1,1,0,0,1,0,1,0]=>1
[1,0,1,1,0,0,1,1,0,0]=>2
[1,0,1,1,0,1,0,0,1,0]=>2
[1,0,1,1,0,1,0,1,0,0]=>3
[1,0,1,1,0,1,1,0,0,0]=>2
[1,0,1,1,1,0,0,0,1,0]=>1
[1,0,1,1,1,0,0,1,0,0]=>2
[1,0,1,1,1,0,1,0,0,0]=>1
[1,0,1,1,1,1,0,0,0,0]=>2
[1,1,0,0,1,0,1,0,1,0]=>1
[1,1,0,0,1,0,1,1,0,0]=>2
[1,1,0,0,1,1,0,0,1,0]=>2
[1,1,0,0,1,1,0,1,0,0]=>3
[1,1,0,0,1,1,1,0,0,0]=>2
[1,1,0,1,0,0,1,0,1,0]=>2
[1,1,0,1,0,0,1,1,0,0]=>3
[1,1,0,1,0,1,0,0,1,0]=>3
[1,1,0,1,0,1,0,1,0,0]=>4
[1,1,0,1,0,1,1,0,0,0]=>3
[1,1,0,1,1,0,0,0,1,0]=>2
[1,1,0,1,1,0,0,1,0,0]=>3
[1,1,0,1,1,0,1,0,0,0]=>2
[1,1,0,1,1,1,0,0,0,0]=>3
[1,1,1,0,0,0,1,0,1,0]=>1
[1,1,1,0,0,0,1,1,0,0]=>2
[1,1,1,0,0,1,0,0,1,0]=>2
[1,1,1,0,0,1,0,1,0,0]=>3
[1,1,1,0,0,1,1,0,0,0]=>2
[1,1,1,0,1,0,0,0,1,0]=>1
[1,1,1,0,1,0,0,1,0,0]=>2
[1,1,1,0,1,0,1,0,0,0]=>1
[1,1,1,0,1,1,0,0,0,0]=>2
[1,1,1,1,0,0,0,0,1,0]=>2
[1,1,1,1,0,0,0,1,0,0]=>3
[1,1,1,1,0,0,1,0,0,0]=>2
[1,1,1,1,0,1,0,0,0,0]=>3
[1,1,1,1,1,0,0,0,0,0]=>2
[1,0,1,0,1,0,1,0,1,0,1,0]=>0
[1,0,1,0,1,0,1,0,1,1,0,0]=>1
[1,0,1,0,1,0,1,1,0,0,1,0]=>1
[1,0,1,0,1,0,1,1,0,1,0,0]=>2
[1,0,1,0,1,0,1,1,1,0,0,0]=>1
[1,0,1,0,1,1,0,0,1,0,1,0]=>1
[1,0,1,0,1,1,0,0,1,1,0,0]=>2
[1,0,1,0,1,1,0,1,0,0,1,0]=>2
[1,0,1,0,1,1,0,1,0,1,0,0]=>3
[1,0,1,0,1,1,0,1,1,0,0,0]=>2
[1,0,1,0,1,1,1,0,0,0,1,0]=>1
[1,0,1,0,1,1,1,0,0,1,0,0]=>2
[1,0,1,0,1,1,1,0,1,0,0,0]=>1
[1,0,1,0,1,1,1,1,0,0,0,0]=>2
[1,0,1,1,0,0,1,0,1,0,1,0]=>1
[1,0,1,1,0,0,1,0,1,1,0,0]=>2
[1,0,1,1,0,0,1,1,0,0,1,0]=>2
[1,0,1,1,0,0,1,1,0,1,0,0]=>3
[1,0,1,1,0,0,1,1,1,0,0,0]=>2
[1,0,1,1,0,1,0,0,1,0,1,0]=>2
[1,0,1,1,0,1,0,0,1,1,0,0]=>3
[1,0,1,1,0,1,0,1,0,0,1,0]=>3
[1,0,1,1,0,1,0,1,0,1,0,0]=>4
[1,0,1,1,0,1,0,1,1,0,0,0]=>3
[1,0,1,1,0,1,1,0,0,0,1,0]=>2
[1,0,1,1,0,1,1,0,0,1,0,0]=>3
[1,0,1,1,0,1,1,0,1,0,0,0]=>2
[1,0,1,1,0,1,1,1,0,0,0,0]=>3
[1,0,1,1,1,0,0,0,1,0,1,0]=>1
[1,0,1,1,1,0,0,0,1,1,0,0]=>2
[1,0,1,1,1,0,0,1,0,0,1,0]=>2
[1,0,1,1,1,0,0,1,0,1,0,0]=>3
[1,0,1,1,1,0,0,1,1,0,0,0]=>2
[1,0,1,1,1,0,1,0,0,0,1,0]=>1
[1,0,1,1,1,0,1,0,0,1,0,0]=>2
[1,0,1,1,1,0,1,0,1,0,0,0]=>1
[1,0,1,1,1,0,1,1,0,0,0,0]=>2
[1,0,1,1,1,1,0,0,0,0,1,0]=>2
[1,0,1,1,1,1,0,0,0,1,0,0]=>3
[1,0,1,1,1,1,0,0,1,0,0,0]=>2
[1,0,1,1,1,1,0,1,0,0,0,0]=>3
[1,0,1,1,1,1,1,0,0,0,0,0]=>2
[1,1,0,0,1,0,1,0,1,0,1,0]=>1
[1,1,0,0,1,0,1,0,1,1,0,0]=>2
[1,1,0,0,1,0,1,1,0,0,1,0]=>2
[1,1,0,0,1,0,1,1,0,1,0,0]=>3
[1,1,0,0,1,0,1,1,1,0,0,0]=>2
[1,1,0,0,1,1,0,0,1,0,1,0]=>2
[1,1,0,0,1,1,0,0,1,1,0,0]=>3
[1,1,0,0,1,1,0,1,0,0,1,0]=>3
[1,1,0,0,1,1,0,1,0,1,0,0]=>4
[1,1,0,0,1,1,0,1,1,0,0,0]=>3
[1,1,0,0,1,1,1,0,0,0,1,0]=>2
[1,1,0,0,1,1,1,0,0,1,0,0]=>3
[1,1,0,0,1,1,1,0,1,0,0,0]=>2
[1,1,0,0,1,1,1,1,0,0,0,0]=>3
[1,1,0,1,0,0,1,0,1,0,1,0]=>2
[1,1,0,1,0,0,1,0,1,1,0,0]=>3
[1,1,0,1,0,0,1,1,0,0,1,0]=>3
[1,1,0,1,0,0,1,1,0,1,0,0]=>4
[1,1,0,1,0,0,1,1,1,0,0,0]=>3
[1,1,0,1,0,1,0,0,1,0,1,0]=>3
[1,1,0,1,0,1,0,0,1,1,0,0]=>4
[1,1,0,1,0,1,0,1,0,0,1,0]=>4
[1,1,0,1,0,1,0,1,0,1,0,0]=>5
[1,1,0,1,0,1,0,1,1,0,0,0]=>4
[1,1,0,1,0,1,1,0,0,0,1,0]=>3
[1,1,0,1,0,1,1,0,0,1,0,0]=>4
[1,1,0,1,0,1,1,0,1,0,0,0]=>3
[1,1,0,1,0,1,1,1,0,0,0,0]=>4
[1,1,0,1,1,0,0,0,1,0,1,0]=>2
[1,1,0,1,1,0,0,0,1,1,0,0]=>3
[1,1,0,1,1,0,0,1,0,0,1,0]=>3
[1,1,0,1,1,0,0,1,0,1,0,0]=>4
[1,1,0,1,1,0,0,1,1,0,0,0]=>3
[1,1,0,1,1,0,1,0,0,0,1,0]=>2
[1,1,0,1,1,0,1,0,0,1,0,0]=>3
[1,1,0,1,1,0,1,0,1,0,0,0]=>2
[1,1,0,1,1,0,1,1,0,0,0,0]=>3
[1,1,0,1,1,1,0,0,0,0,1,0]=>3
[1,1,0,1,1,1,0,0,0,1,0,0]=>4
[1,1,0,1,1,1,0,0,1,0,0,0]=>3
[1,1,0,1,1,1,0,1,0,0,0,0]=>4
[1,1,0,1,1,1,1,0,0,0,0,0]=>3
[1,1,1,0,0,0,1,0,1,0,1,0]=>1
[1,1,1,0,0,0,1,0,1,1,0,0]=>2
[1,1,1,0,0,0,1,1,0,0,1,0]=>2
[1,1,1,0,0,0,1,1,0,1,0,0]=>3
[1,1,1,0,0,0,1,1,1,0,0,0]=>2
[1,1,1,0,0,1,0,0,1,0,1,0]=>2
[1,1,1,0,0,1,0,0,1,1,0,0]=>3
[1,1,1,0,0,1,0,1,0,0,1,0]=>3
[1,1,1,0,0,1,0,1,0,1,0,0]=>4
[1,1,1,0,0,1,0,1,1,0,0,0]=>3
[1,1,1,0,0,1,1,0,0,0,1,0]=>2
[1,1,1,0,0,1,1,0,0,1,0,0]=>3
[1,1,1,0,0,1,1,0,1,0,0,0]=>2
[1,1,1,0,0,1,1,1,0,0,0,0]=>3
[1,1,1,0,1,0,0,0,1,0,1,0]=>1
[1,1,1,0,1,0,0,0,1,1,0,0]=>2
[1,1,1,0,1,0,0,1,0,0,1,0]=>2
[1,1,1,0,1,0,0,1,0,1,0,0]=>3
[1,1,1,0,1,0,0,1,1,0,0,0]=>2
[1,1,1,0,1,0,1,0,0,0,1,0]=>1
[1,1,1,0,1,0,1,0,0,1,0,0]=>2
[1,1,1,0,1,0,1,0,1,0,0,0]=>1
[1,1,1,0,1,0,1,1,0,0,0,0]=>2
[1,1,1,0,1,1,0,0,0,0,1,0]=>2
[1,1,1,0,1,1,0,0,0,1,0,0]=>3
[1,1,1,0,1,1,0,0,1,0,0,0]=>2
[1,1,1,0,1,1,0,1,0,0,0,0]=>3
[1,1,1,0,1,1,1,0,0,0,0,0]=>2
[1,1,1,1,0,0,0,0,1,0,1,0]=>2
[1,1,1,1,0,0,0,0,1,1,0,0]=>3
[1,1,1,1,0,0,0,1,0,0,1,0]=>3
[1,1,1,1,0,0,0,1,0,1,0,0]=>4
[1,1,1,1,0,0,0,1,1,0,0,0]=>3
[1,1,1,1,0,0,1,0,0,0,1,0]=>2
[1,1,1,1,0,0,1,0,0,1,0,0]=>3
[1,1,1,1,0,0,1,0,1,0,0,0]=>2
[1,1,1,1,0,0,1,1,0,0,0,0]=>3
[1,1,1,1,0,1,0,0,0,0,1,0]=>3
[1,1,1,1,0,1,0,0,0,1,0,0]=>4
[1,1,1,1,0,1,0,0,1,0,0,0]=>3
[1,1,1,1,0,1,0,1,0,0,0,0]=>4
[1,1,1,1,0,1,1,0,0,0,0,0]=>3
[1,1,1,1,1,0,0,0,0,0,1,0]=>2
[1,1,1,1,1,0,0,0,0,1,0,0]=>3
[1,1,1,1,1,0,0,0,1,0,0,0]=>2
[1,1,1,1,1,0,0,1,0,0,0,0]=>3
[1,1,1,1,1,0,1,0,0,0,0,0]=>2
[1,1,1,1,1,1,0,0,0,0,0,0]=>3
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of evenly positioned ascents of the Dyck path, with the initial position equal to 1.
References
[1] Sulanke, R. A. Catalan path statistics having the Narayana distribution MathSciNet:1603692
Code
def statistic(x): stat = 0 currht = 0 position = 0 for c in x: position = position + 1 if c == 1: currht = currht + 1 if position % 2 == 0: stat = stat + 1 else: currht = currht - 1 return stat
Created
Dec 16, 2015 at 02:08 by Veronica Waite
Updated
Nov 16, 2017 at 11:42 by Martin Rubey
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!