***************************************************************************** * www.FindStat.org - The Combinatorial Statistic Finder * * * * Copyright (C) 2019 The FindStatCrew * * * * This information is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. * ***************************************************************************** ----------------------------------------------------------------------------- Statistic identifier: St000331 ----------------------------------------------------------------------------- Collection: Dyck paths ----------------------------------------------------------------------------- Description: The number of upper interactions of a Dyck path. An ''upper interaction'' in a Dyck path is defined as the occurrence of a factor '''$A^{k}$$B^{k}$''' for any '''${k ≥ 1}$''', where '''${A}$''' is a down-step and '''${B}$''' is a up-step. ----------------------------------------------------------------------------- References: [1] [[http://www.emis.de/journals/SLC/wpapers/s54leborgne.pdf]] ----------------------------------------------------------------------------- Code: def statistic(List): interactions = 0 i = 0 count = 0 while i < len(List): if List[i] == 0: if List[i-1] == 1: count = 0 count = count + 1 if List[i] == 1 and count > 0: interactions = interactions + 1 count = count - 1 i = i + 1 return interactions ----------------------------------------------------------------------------- Statistic values: [1,0] => 0 [1,0,1,0] => 1 [1,1,0,0] => 0 [1,0,1,0,1,0] => 2 [1,0,1,1,0,0] => 1 [1,1,0,0,1,0] => 1 [1,1,0,1,0,0] => 1 [1,1,1,0,0,0] => 0 [1,0,1,0,1,0,1,0] => 3 [1,0,1,0,1,1,0,0] => 2 [1,0,1,1,0,0,1,0] => 2 [1,0,1,1,0,1,0,0] => 2 [1,0,1,1,1,0,0,0] => 1 [1,1,0,0,1,0,1,0] => 2 [1,1,0,0,1,1,0,0] => 2 [1,1,0,1,0,0,1,0] => 2 [1,1,0,1,0,1,0,0] => 2 [1,1,0,1,1,0,0,0] => 1 [1,1,1,0,0,0,1,0] => 1 [1,1,1,0,0,1,0,0] => 1 [1,1,1,0,1,0,0,0] => 1 [1,1,1,1,0,0,0,0] => 0 [1,0,1,0,1,0,1,0,1,0] => 4 [1,0,1,0,1,0,1,1,0,0] => 3 [1,0,1,0,1,1,0,0,1,0] => 3 [1,0,1,0,1,1,0,1,0,0] => 3 [1,0,1,0,1,1,1,0,0,0] => 2 [1,0,1,1,0,0,1,0,1,0] => 3 [1,0,1,1,0,0,1,1,0,0] => 3 [1,0,1,1,0,1,0,0,1,0] => 3 [1,0,1,1,0,1,0,1,0,0] => 3 [1,0,1,1,0,1,1,0,0,0] => 2 [1,0,1,1,1,0,0,0,1,0] => 2 [1,0,1,1,1,0,0,1,0,0] => 2 [1,0,1,1,1,0,1,0,0,0] => 2 [1,0,1,1,1,1,0,0,0,0] => 1 [1,1,0,0,1,0,1,0,1,0] => 3 [1,1,0,0,1,0,1,1,0,0] => 2 [1,1,0,0,1,1,0,0,1,0] => 3 [1,1,0,0,1,1,0,1,0,0] => 3 [1,1,0,0,1,1,1,0,0,0] => 2 [1,1,0,1,0,0,1,0,1,0] => 3 [1,1,0,1,0,0,1,1,0,0] => 3 [1,1,0,1,0,1,0,0,1,0] => 3 [1,1,0,1,0,1,0,1,0,0] => 3 [1,1,0,1,0,1,1,0,0,0] => 2 [1,1,0,1,1,0,0,0,1,0] => 2 [1,1,0,1,1,0,0,1,0,0] => 2 [1,1,0,1,1,0,1,0,0,0] => 2 [1,1,0,1,1,1,0,0,0,0] => 1 [1,1,1,0,0,0,1,0,1,0] => 2 [1,1,1,0,0,0,1,1,0,0] => 2 [1,1,1,0,0,1,0,0,1,0] => 2 [1,1,1,0,0,1,0,1,0,0] => 2 [1,1,1,0,0,1,1,0,0,0] => 2 [1,1,1,0,1,0,0,0,1,0] => 2 [1,1,1,0,1,0,0,1,0,0] => 2 [1,1,1,0,1,0,1,0,0,0] => 2 [1,1,1,0,1,1,0,0,0,0] => 1 [1,1,1,1,0,0,0,0,1,0] => 1 [1,1,1,1,0,0,0,1,0,0] => 1 [1,1,1,1,0,0,1,0,0,0] => 1 [1,1,1,1,0,1,0,0,0,0] => 1 [1,1,1,1,1,0,0,0,0,0] => 0 [1,0,1,0,1,0,1,0,1,0,1,0] => 5 [1,0,1,0,1,0,1,0,1,1,0,0] => 4 [1,0,1,0,1,0,1,1,0,0,1,0] => 4 [1,0,1,0,1,0,1,1,0,1,0,0] => 4 [1,0,1,0,1,0,1,1,1,0,0,0] => 3 [1,0,1,0,1,1,0,0,1,0,1,0] => 4 [1,0,1,0,1,1,0,0,1,1,0,0] => 4 [1,0,1,0,1,1,0,1,0,0,1,0] => 4 [1,0,1,0,1,1,0,1,0,1,0,0] => 4 [1,0,1,0,1,1,0,1,1,0,0,0] => 3 [1,0,1,0,1,1,1,0,0,0,1,0] => 3 [1,0,1,0,1,1,1,0,0,1,0,0] => 3 [1,0,1,0,1,1,1,0,1,0,0,0] => 3 [1,0,1,0,1,1,1,1,0,0,0,0] => 2 [1,0,1,1,0,0,1,0,1,0,1,0] => 4 [1,0,1,1,0,0,1,0,1,1,0,0] => 3 [1,0,1,1,0,0,1,1,0,0,1,0] => 4 [1,0,1,1,0,0,1,1,0,1,0,0] => 4 [1,0,1,1,0,0,1,1,1,0,0,0] => 3 [1,0,1,1,0,1,0,0,1,0,1,0] => 4 [1,0,1,1,0,1,0,0,1,1,0,0] => 4 [1,0,1,1,0,1,0,1,0,0,1,0] => 4 [1,0,1,1,0,1,0,1,0,1,0,0] => 4 [1,0,1,1,0,1,0,1,1,0,0,0] => 3 [1,0,1,1,0,1,1,0,0,0,1,0] => 3 [1,0,1,1,0,1,1,0,0,1,0,0] => 3 [1,0,1,1,0,1,1,0,1,0,0,0] => 3 [1,0,1,1,0,1,1,1,0,0,0,0] => 2 [1,0,1,1,1,0,0,0,1,0,1,0] => 3 [1,0,1,1,1,0,0,0,1,1,0,0] => 3 [1,0,1,1,1,0,0,1,0,0,1,0] => 3 [1,0,1,1,1,0,0,1,0,1,0,0] => 3 [1,0,1,1,1,0,0,1,1,0,0,0] => 3 [1,0,1,1,1,0,1,0,0,0,1,0] => 3 [1,0,1,1,1,0,1,0,0,1,0,0] => 3 [1,0,1,1,1,0,1,0,1,0,0,0] => 3 [1,0,1,1,1,0,1,1,0,0,0,0] => 2 [1,0,1,1,1,1,0,0,0,0,1,0] => 2 [1,0,1,1,1,1,0,0,0,1,0,0] => 2 [1,0,1,1,1,1,0,0,1,0,0,0] => 2 [1,0,1,1,1,1,0,1,0,0,0,0] => 2 [1,0,1,1,1,1,1,0,0,0,0,0] => 1 [1,1,0,0,1,0,1,0,1,0,1,0] => 4 [1,1,0,0,1,0,1,0,1,1,0,0] => 3 [1,1,0,0,1,0,1,1,0,0,1,0] => 3 [1,1,0,0,1,0,1,1,0,1,0,0] => 3 [1,1,0,0,1,0,1,1,1,0,0,0] => 2 [1,1,0,0,1,1,0,0,1,0,1,0] => 4 [1,1,0,0,1,1,0,0,1,1,0,0] => 4 [1,1,0,0,1,1,0,1,0,0,1,0] => 4 [1,1,0,0,1,1,0,1,0,1,0,0] => 4 [1,1,0,0,1,1,0,1,1,0,0,0] => 3 [1,1,0,0,1,1,1,0,0,0,1,0] => 3 [1,1,0,0,1,1,1,0,0,1,0,0] => 3 [1,1,0,0,1,1,1,0,1,0,0,0] => 3 [1,1,0,0,1,1,1,1,0,0,0,0] => 2 [1,1,0,1,0,0,1,0,1,0,1,0] => 4 [1,1,0,1,0,0,1,0,1,1,0,0] => 3 [1,1,0,1,0,0,1,1,0,0,1,0] => 4 [1,1,0,1,0,0,1,1,0,1,0,0] => 4 [1,1,0,1,0,0,1,1,1,0,0,0] => 3 [1,1,0,1,0,1,0,0,1,0,1,0] => 4 [1,1,0,1,0,1,0,0,1,1,0,0] => 4 [1,1,0,1,0,1,0,1,0,0,1,0] => 4 [1,1,0,1,0,1,0,1,0,1,0,0] => 4 [1,1,0,1,0,1,0,1,1,0,0,0] => 3 [1,1,0,1,0,1,1,0,0,0,1,0] => 3 [1,1,0,1,0,1,1,0,0,1,0,0] => 3 [1,1,0,1,0,1,1,0,1,0,0,0] => 3 [1,1,0,1,0,1,1,1,0,0,0,0] => 2 [1,1,0,1,1,0,0,0,1,0,1,0] => 3 [1,1,0,1,1,0,0,0,1,1,0,0] => 3 [1,1,0,1,1,0,0,1,0,0,1,0] => 3 [1,1,0,1,1,0,0,1,0,1,0,0] => 3 [1,1,0,1,1,0,0,1,1,0,0,0] => 3 [1,1,0,1,1,0,1,0,0,0,1,0] => 3 [1,1,0,1,1,0,1,0,0,1,0,0] => 3 [1,1,0,1,1,0,1,0,1,0,0,0] => 3 [1,1,0,1,1,0,1,1,0,0,0,0] => 2 [1,1,0,1,1,1,0,0,0,0,1,0] => 2 [1,1,0,1,1,1,0,0,0,1,0,0] => 2 [1,1,0,1,1,1,0,0,1,0,0,0] => 2 [1,1,0,1,1,1,0,1,0,0,0,0] => 2 [1,1,0,1,1,1,1,0,0,0,0,0] => 1 [1,1,1,0,0,0,1,0,1,0,1,0] => 3 [1,1,1,0,0,0,1,0,1,1,0,0] => 2 [1,1,1,0,0,0,1,1,0,0,1,0] => 3 [1,1,1,0,0,0,1,1,0,1,0,0] => 3 [1,1,1,0,0,0,1,1,1,0,0,0] => 3 [1,1,1,0,0,1,0,0,1,0,1,0] => 3 [1,1,1,0,0,1,0,0,1,1,0,0] => 3 [1,1,1,0,0,1,0,1,0,0,1,0] => 3 [1,1,1,0,0,1,0,1,0,1,0,0] => 3 [1,1,1,0,0,1,0,1,1,0,0,0] => 2 [1,1,1,0,0,1,1,0,0,0,1,0] => 3 [1,1,1,0,0,1,1,0,0,1,0,0] => 3 [1,1,1,0,0,1,1,0,1,0,0,0] => 3 [1,1,1,0,0,1,1,1,0,0,0,0] => 2 [1,1,1,0,1,0,0,0,1,0,1,0] => 3 [1,1,1,0,1,0,0,0,1,1,0,0] => 3 [1,1,1,0,1,0,0,1,0,0,1,0] => 3 [1,1,1,0,1,0,0,1,0,1,0,0] => 3 [1,1,1,0,1,0,0,1,1,0,0,0] => 3 [1,1,1,0,1,0,1,0,0,0,1,0] => 3 [1,1,1,0,1,0,1,0,0,1,0,0] => 3 [1,1,1,0,1,0,1,0,1,0,0,0] => 3 [1,1,1,0,1,0,1,1,0,0,0,0] => 2 [1,1,1,0,1,1,0,0,0,0,1,0] => 2 [1,1,1,0,1,1,0,0,0,1,0,0] => 2 [1,1,1,0,1,1,0,0,1,0,0,0] => 2 [1,1,1,0,1,1,0,1,0,0,0,0] => 2 [1,1,1,0,1,1,1,0,0,0,0,0] => 1 [1,1,1,1,0,0,0,0,1,0,1,0] => 2 [1,1,1,1,0,0,0,0,1,1,0,0] => 2 [1,1,1,1,0,0,0,1,0,0,1,0] => 2 [1,1,1,1,0,0,0,1,0,1,0,0] => 2 [1,1,1,1,0,0,0,1,1,0,0,0] => 2 [1,1,1,1,0,0,1,0,0,0,1,0] => 2 [1,1,1,1,0,0,1,0,0,1,0,0] => 2 [1,1,1,1,0,0,1,0,1,0,0,0] => 2 [1,1,1,1,0,0,1,1,0,0,0,0] => 2 [1,1,1,1,0,1,0,0,0,0,1,0] => 2 [1,1,1,1,0,1,0,0,0,1,0,0] => 2 [1,1,1,1,0,1,0,0,1,0,0,0] => 2 [1,1,1,1,0,1,0,1,0,0,0,0] => 2 [1,1,1,1,0,1,1,0,0,0,0,0] => 1 [1,1,1,1,1,0,0,0,0,0,1,0] => 1 [1,1,1,1,1,0,0,0,0,1,0,0] => 1 [1,1,1,1,1,0,0,0,1,0,0,0] => 1 [1,1,1,1,1,0,0,1,0,0,0,0] => 1 [1,1,1,1,1,0,1,0,0,0,0,0] => 1 [1,1,1,1,1,1,0,0,0,0,0,0] => 0 ----------------------------------------------------------------------------- Created: Dec 17, 2015 at 23:15 by Mike Gaudette ----------------------------------------------------------------------------- Last Updated: May 20, 2016 at 20:54 by Martin Rubey