***************************************************************************** * www.FindStat.org - The Combinatorial Statistic Finder * * * * Copyright (C) 2019 The FindStatCrew * * * * This information is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. * ***************************************************************************** ----------------------------------------------------------------------------- Statistic identifier: St000335 ----------------------------------------------------------------------------- Collection: Dyck paths ----------------------------------------------------------------------------- Description: The difference of lower and upper interactions. An ''upper interaction'' in a Dyck path is the occurrence of a factor $0^k 1^k$ with $k \geq 1$ (see [[St000331]]), and a ''lower interaction'' is the occurrence of a factor $1^k 0^k$ with $k \geq 1$. In both cases, $1$ denotes an up-step $0$ denotes a a down-step. ----------------------------------------------------------------------------- References: [1] [[http://www.emis.de/journals/SLC/wpapers/s54leborgne.pdf]] ----------------------------------------------------------------------------- Code: def upper_interactions(x): interactions = 0 i = 0 count = 0 while i < len(x): if x[i] == 0: if x[i-1] == 1: count = 0 count = count + 1 if x[i] == 1 and count > 0: interactions = interactions + 1 count = count - 1 i = i + 1 return interactions def lower_interactions(x): interactions = 0 i = 0 count = 0 while i < len(x): if x[i] == 1: if x[i-1] == 0: count = 0 count = count + 1 if x[i] == 0 and count > 0: interactions = interactions + 1 count = count - 1 i = i + 1 return interactions def statistic(D): return lower_interactions(D) - upper_interactions(D) ----------------------------------------------------------------------------- Statistic values: [1,0] => 1 [1,0,1,0] => 1 [1,1,0,0] => 2 [1,0,1,0,1,0] => 1 [1,0,1,1,0,0] => 2 [1,1,0,0,1,0] => 2 [1,1,0,1,0,0] => 1 [1,1,1,0,0,0] => 3 [1,0,1,0,1,0,1,0] => 1 [1,0,1,0,1,1,0,0] => 2 [1,0,1,1,0,0,1,0] => 2 [1,0,1,1,0,1,0,0] => 1 [1,0,1,1,1,0,0,0] => 3 [1,1,0,0,1,0,1,0] => 2 [1,1,0,0,1,1,0,0] => 2 [1,1,0,1,0,0,1,0] => 1 [1,1,0,1,0,1,0,0] => 1 [1,1,0,1,1,0,0,0] => 2 [1,1,1,0,0,0,1,0] => 3 [1,1,1,0,0,1,0,0] => 2 [1,1,1,0,1,0,0,0] => 1 [1,1,1,1,0,0,0,0] => 4 [1,0,1,0,1,0,1,0,1,0] => 1 [1,0,1,0,1,0,1,1,0,0] => 2 [1,0,1,0,1,1,0,0,1,0] => 2 [1,0,1,0,1,1,0,1,0,0] => 1 [1,0,1,0,1,1,1,0,0,0] => 3 [1,0,1,1,0,0,1,0,1,0] => 2 [1,0,1,1,0,0,1,1,0,0] => 2 [1,0,1,1,0,1,0,0,1,0] => 1 [1,0,1,1,0,1,0,1,0,0] => 1 [1,0,1,1,0,1,1,0,0,0] => 2 [1,0,1,1,1,0,0,0,1,0] => 3 [1,0,1,1,1,0,0,1,0,0] => 2 [1,0,1,1,1,0,1,0,0,0] => 1 [1,0,1,1,1,1,0,0,0,0] => 4 [1,1,0,0,1,0,1,0,1,0] => 2 [1,1,0,0,1,0,1,1,0,0] => 3 [1,1,0,0,1,1,0,0,1,0] => 2 [1,1,0,0,1,1,0,1,0,0] => 1 [1,1,0,0,1,1,1,0,0,0] => 3 [1,1,0,1,0,0,1,0,1,0] => 1 [1,1,0,1,0,0,1,1,0,0] => 1 [1,1,0,1,0,1,0,0,1,0] => 1 [1,1,0,1,0,1,0,1,0,0] => 1 [1,1,0,1,0,1,1,0,0,0] => 2 [1,1,0,1,1,0,0,0,1,0] => 2 [1,1,0,1,1,0,0,1,0,0] => 2 [1,1,0,1,1,0,1,0,0,0] => 1 [1,1,0,1,1,1,0,0,0,0] => 3 [1,1,1,0,0,0,1,0,1,0] => 3 [1,1,1,0,0,0,1,1,0,0] => 3 [1,1,1,0,0,1,0,0,1,0] => 2 [1,1,1,0,0,1,0,1,0,0] => 2 [1,1,1,0,0,1,1,0,0,0] => 2 [1,1,1,0,1,0,0,0,1,0] => 1 [1,1,1,0,1,0,0,1,0,0] => 1 [1,1,1,0,1,0,1,0,0,0] => 1 [1,1,1,0,1,1,0,0,0,0] => 2 [1,1,1,1,0,0,0,0,1,0] => 4 [1,1,1,1,0,0,0,1,0,0] => 3 [1,1,1,1,0,0,1,0,0,0] => 2 [1,1,1,1,0,1,0,0,0,0] => 1 [1,1,1,1,1,0,0,0,0,0] => 5 [1,0,1,0,1,0,1,0,1,0,1,0] => 1 [1,0,1,0,1,0,1,0,1,1,0,0] => 2 [1,0,1,0,1,0,1,1,0,0,1,0] => 2 [1,0,1,0,1,0,1,1,0,1,0,0] => 1 [1,0,1,0,1,0,1,1,1,0,0,0] => 3 [1,0,1,0,1,1,0,0,1,0,1,0] => 2 [1,0,1,0,1,1,0,0,1,1,0,0] => 2 [1,0,1,0,1,1,0,1,0,0,1,0] => 1 [1,0,1,0,1,1,0,1,0,1,0,0] => 1 [1,0,1,0,1,1,0,1,1,0,0,0] => 2 [1,0,1,0,1,1,1,0,0,0,1,0] => 3 [1,0,1,0,1,1,1,0,0,1,0,0] => 2 [1,0,1,0,1,1,1,0,1,0,0,0] => 1 [1,0,1,0,1,1,1,1,0,0,0,0] => 4 [1,0,1,1,0,0,1,0,1,0,1,0] => 2 [1,0,1,1,0,0,1,0,1,1,0,0] => 3 [1,0,1,1,0,0,1,1,0,0,1,0] => 2 [1,0,1,1,0,0,1,1,0,1,0,0] => 1 [1,0,1,1,0,0,1,1,1,0,0,0] => 3 [1,0,1,1,0,1,0,0,1,0,1,0] => 1 [1,0,1,1,0,1,0,0,1,1,0,0] => 1 [1,0,1,1,0,1,0,1,0,0,1,0] => 1 [1,0,1,1,0,1,0,1,0,1,0,0] => 1 [1,0,1,1,0,1,0,1,1,0,0,0] => 2 [1,0,1,1,0,1,1,0,0,0,1,0] => 2 [1,0,1,1,0,1,1,0,0,1,0,0] => 2 [1,0,1,1,0,1,1,0,1,0,0,0] => 1 [1,0,1,1,0,1,1,1,0,0,0,0] => 3 [1,0,1,1,1,0,0,0,1,0,1,0] => 3 [1,0,1,1,1,0,0,0,1,1,0,0] => 3 [1,0,1,1,1,0,0,1,0,0,1,0] => 2 [1,0,1,1,1,0,0,1,0,1,0,0] => 2 [1,0,1,1,1,0,0,1,1,0,0,0] => 2 [1,0,1,1,1,0,1,0,0,0,1,0] => 1 [1,0,1,1,1,0,1,0,0,1,0,0] => 1 [1,0,1,1,1,0,1,0,1,0,0,0] => 1 [1,0,1,1,1,0,1,1,0,0,0,0] => 2 [1,0,1,1,1,1,0,0,0,0,1,0] => 4 [1,0,1,1,1,1,0,0,0,1,0,0] => 3 [1,0,1,1,1,1,0,0,1,0,0,0] => 2 [1,0,1,1,1,1,0,1,0,0,0,0] => 1 [1,0,1,1,1,1,1,0,0,0,0,0] => 5 [1,1,0,0,1,0,1,0,1,0,1,0] => 2 [1,1,0,0,1,0,1,0,1,1,0,0] => 3 [1,1,0,0,1,0,1,1,0,0,1,0] => 3 [1,1,0,0,1,0,1,1,0,1,0,0] => 2 [1,1,0,0,1,0,1,1,1,0,0,0] => 4 [1,1,0,0,1,1,0,0,1,0,1,0] => 2 [1,1,0,0,1,1,0,0,1,1,0,0] => 2 [1,1,0,0,1,1,0,1,0,0,1,0] => 1 [1,1,0,0,1,1,0,1,0,1,0,0] => 1 [1,1,0,0,1,1,0,1,1,0,0,0] => 2 [1,1,0,0,1,1,1,0,0,0,1,0] => 3 [1,1,0,0,1,1,1,0,0,1,0,0] => 2 [1,1,0,0,1,1,1,0,1,0,0,0] => 1 [1,1,0,0,1,1,1,1,0,0,0,0] => 4 [1,1,0,1,0,0,1,0,1,0,1,0] => 1 [1,1,0,1,0,0,1,0,1,1,0,0] => 2 [1,1,0,1,0,0,1,1,0,0,1,0] => 1 [1,1,0,1,0,0,1,1,0,1,0,0] => 0 [1,1,0,1,0,0,1,1,1,0,0,0] => 2 [1,1,0,1,0,1,0,0,1,0,1,0] => 1 [1,1,0,1,0,1,0,0,1,1,0,0] => 1 [1,1,0,1,0,1,0,1,0,0,1,0] => 1 [1,1,0,1,0,1,0,1,0,1,0,0] => 1 [1,1,0,1,0,1,0,1,1,0,0,0] => 2 [1,1,0,1,0,1,1,0,0,0,1,0] => 2 [1,1,0,1,0,1,1,0,0,1,0,0] => 2 [1,1,0,1,0,1,1,0,1,0,0,0] => 1 [1,1,0,1,0,1,1,1,0,0,0,0] => 3 [1,1,0,1,1,0,0,0,1,0,1,0] => 2 [1,1,0,1,1,0,0,0,1,1,0,0] => 2 [1,1,0,1,1,0,0,1,0,0,1,0] => 2 [1,1,0,1,1,0,0,1,0,1,0,0] => 2 [1,1,0,1,1,0,0,1,1,0,0,0] => 2 [1,1,0,1,1,0,1,0,0,0,1,0] => 1 [1,1,0,1,1,0,1,0,0,1,0,0] => 1 [1,1,0,1,1,0,1,0,1,0,0,0] => 1 [1,1,0,1,1,0,1,1,0,0,0,0] => 2 [1,1,0,1,1,1,0,0,0,0,1,0] => 3 [1,1,0,1,1,1,0,0,0,1,0,0] => 3 [1,1,0,1,1,1,0,0,1,0,0,0] => 2 [1,1,0,1,1,1,0,1,0,0,0,0] => 1 [1,1,0,1,1,1,1,0,0,0,0,0] => 4 [1,1,1,0,0,0,1,0,1,0,1,0] => 3 [1,1,1,0,0,0,1,0,1,1,0,0] => 4 [1,1,1,0,0,0,1,1,0,0,1,0] => 3 [1,1,1,0,0,0,1,1,0,1,0,0] => 2 [1,1,1,0,0,0,1,1,1,0,0,0] => 3 [1,1,1,0,0,1,0,0,1,0,1,0] => 2 [1,1,1,0,0,1,0,0,1,1,0,0] => 2 [1,1,1,0,0,1,0,1,0,0,1,0] => 2 [1,1,1,0,0,1,0,1,0,1,0,0] => 2 [1,1,1,0,0,1,0,1,1,0,0,0] => 3 [1,1,1,0,0,1,1,0,0,0,1,0] => 2 [1,1,1,0,0,1,1,0,0,1,0,0] => 2 [1,1,1,0,0,1,1,0,1,0,0,0] => 1 [1,1,1,0,0,1,1,1,0,0,0,0] => 3 [1,1,1,0,1,0,0,0,1,0,1,0] => 1 [1,1,1,0,1,0,0,0,1,1,0,0] => 1 [1,1,1,0,1,0,0,1,0,0,1,0] => 1 [1,1,1,0,1,0,0,1,0,1,0,0] => 1 [1,1,1,0,1,0,0,1,1,0,0,0] => 1 [1,1,1,0,1,0,1,0,0,0,1,0] => 1 [1,1,1,0,1,0,1,0,0,1,0,0] => 1 [1,1,1,0,1,0,1,0,1,0,0,0] => 1 [1,1,1,0,1,0,1,1,0,0,0,0] => 2 [1,1,1,0,1,1,0,0,0,0,1,0] => 2 [1,1,1,0,1,1,0,0,0,1,0,0] => 2 [1,1,1,0,1,1,0,0,1,0,0,0] => 2 [1,1,1,0,1,1,0,1,0,0,0,0] => 1 [1,1,1,0,1,1,1,0,0,0,0,0] => 3 [1,1,1,1,0,0,0,0,1,0,1,0] => 4 [1,1,1,1,0,0,0,0,1,1,0,0] => 4 [1,1,1,1,0,0,0,1,0,0,1,0] => 3 [1,1,1,1,0,0,0,1,0,1,0,0] => 3 [1,1,1,1,0,0,0,1,1,0,0,0] => 3 [1,1,1,1,0,0,1,0,0,0,1,0] => 2 [1,1,1,1,0,0,1,0,0,1,0,0] => 2 [1,1,1,1,0,0,1,0,1,0,0,0] => 2 [1,1,1,1,0,0,1,1,0,0,0,0] => 2 [1,1,1,1,0,1,0,0,0,0,1,0] => 1 [1,1,1,1,0,1,0,0,0,1,0,0] => 1 [1,1,1,1,0,1,0,0,1,0,0,0] => 1 [1,1,1,1,0,1,0,1,0,0,0,0] => 1 [1,1,1,1,0,1,1,0,0,0,0,0] => 2 [1,1,1,1,1,0,0,0,0,0,1,0] => 5 [1,1,1,1,1,0,0,0,0,1,0,0] => 4 [1,1,1,1,1,0,0,0,1,0,0,0] => 3 [1,1,1,1,1,0,0,1,0,0,0,0] => 2 [1,1,1,1,1,0,1,0,0,0,0,0] => 1 [1,1,1,1,1,1,0,0,0,0,0,0] => 6 ----------------------------------------------------------------------------- Created: Dec 18, 2015 at 06:24 by Mike Gaudette ----------------------------------------------------------------------------- Last Updated: Dec 30, 2016 at 10:36 by Christian Stump