Identifier
- St000443: Dyck paths ⟶ ℤ (values match St000024The number of double up and double down steps of a Dyck path., St001007Number of simple modules with projective dimension 1 in the Nakayama algebra corresponding to the Dyck path., St001187The number of simple modules with grade at least one in the corresponding Nakayama algebra., St001224Let X be the direct sum of all simple modules of the corresponding Nakayama algebra.)
Values
=>
Cc0005;cc-rep
[1,0]=>1
[1,0,1,0]=>1
[1,1,0,0]=>2
[1,0,1,0,1,0]=>1
[1,0,1,1,0,0]=>2
[1,1,0,0,1,0]=>2
[1,1,0,1,0,0]=>2
[1,1,1,0,0,0]=>3
[1,0,1,0,1,0,1,0]=>1
[1,0,1,0,1,1,0,0]=>2
[1,0,1,1,0,0,1,0]=>2
[1,0,1,1,0,1,0,0]=>2
[1,0,1,1,1,0,0,0]=>3
[1,1,0,0,1,0,1,0]=>2
[1,1,0,0,1,1,0,0]=>3
[1,1,0,1,0,0,1,0]=>2
[1,1,0,1,0,1,0,0]=>2
[1,1,0,1,1,0,0,0]=>3
[1,1,1,0,0,0,1,0]=>3
[1,1,1,0,0,1,0,0]=>3
[1,1,1,0,1,0,0,0]=>3
[1,1,1,1,0,0,0,0]=>4
[1,0,1,0,1,0,1,0,1,0]=>1
[1,0,1,0,1,0,1,1,0,0]=>2
[1,0,1,0,1,1,0,0,1,0]=>2
[1,0,1,0,1,1,0,1,0,0]=>2
[1,0,1,0,1,1,1,0,0,0]=>3
[1,0,1,1,0,0,1,0,1,0]=>2
[1,0,1,1,0,0,1,1,0,0]=>3
[1,0,1,1,0,1,0,0,1,0]=>2
[1,0,1,1,0,1,0,1,0,0]=>2
[1,0,1,1,0,1,1,0,0,0]=>3
[1,0,1,1,1,0,0,0,1,0]=>3
[1,0,1,1,1,0,0,1,0,0]=>3
[1,0,1,1,1,0,1,0,0,0]=>3
[1,0,1,1,1,1,0,0,0,0]=>4
[1,1,0,0,1,0,1,0,1,0]=>2
[1,1,0,0,1,0,1,1,0,0]=>3
[1,1,0,0,1,1,0,0,1,0]=>3
[1,1,0,0,1,1,0,1,0,0]=>3
[1,1,0,0,1,1,1,0,0,0]=>4
[1,1,0,1,0,0,1,0,1,0]=>2
[1,1,0,1,0,0,1,1,0,0]=>3
[1,1,0,1,0,1,0,0,1,0]=>2
[1,1,0,1,0,1,0,1,0,0]=>2
[1,1,0,1,0,1,1,0,0,0]=>3
[1,1,0,1,1,0,0,0,1,0]=>3
[1,1,0,1,1,0,0,1,0,0]=>3
[1,1,0,1,1,0,1,0,0,0]=>3
[1,1,0,1,1,1,0,0,0,0]=>4
[1,1,1,0,0,0,1,0,1,0]=>3
[1,1,1,0,0,0,1,1,0,0]=>4
[1,1,1,0,0,1,0,0,1,0]=>3
[1,1,1,0,0,1,0,1,0,0]=>3
[1,1,1,0,0,1,1,0,0,0]=>4
[1,1,1,0,1,0,0,0,1,0]=>3
[1,1,1,0,1,0,0,1,0,0]=>3
[1,1,1,0,1,0,1,0,0,0]=>3
[1,1,1,0,1,1,0,0,0,0]=>4
[1,1,1,1,0,0,0,0,1,0]=>4
[1,1,1,1,0,0,0,1,0,0]=>4
[1,1,1,1,0,0,1,0,0,0]=>4
[1,1,1,1,0,1,0,0,0,0]=>4
[1,1,1,1,1,0,0,0,0,0]=>5
[1,0,1,0,1,0,1,0,1,0,1,0]=>1
[1,0,1,0,1,0,1,0,1,1,0,0]=>2
[1,0,1,0,1,0,1,1,0,0,1,0]=>2
[1,0,1,0,1,0,1,1,0,1,0,0]=>2
[1,0,1,0,1,0,1,1,1,0,0,0]=>3
[1,0,1,0,1,1,0,0,1,0,1,0]=>2
[1,0,1,0,1,1,0,0,1,1,0,0]=>3
[1,0,1,0,1,1,0,1,0,0,1,0]=>2
[1,0,1,0,1,1,0,1,0,1,0,0]=>2
[1,0,1,0,1,1,0,1,1,0,0,0]=>3
[1,0,1,0,1,1,1,0,0,0,1,0]=>3
[1,0,1,0,1,1,1,0,0,1,0,0]=>3
[1,0,1,0,1,1,1,0,1,0,0,0]=>3
[1,0,1,0,1,1,1,1,0,0,0,0]=>4
[1,0,1,1,0,0,1,0,1,0,1,0]=>2
[1,0,1,1,0,0,1,0,1,1,0,0]=>3
[1,0,1,1,0,0,1,1,0,0,1,0]=>3
[1,0,1,1,0,0,1,1,0,1,0,0]=>3
[1,0,1,1,0,0,1,1,1,0,0,0]=>4
[1,0,1,1,0,1,0,0,1,0,1,0]=>2
[1,0,1,1,0,1,0,0,1,1,0,0]=>3
[1,0,1,1,0,1,0,1,0,0,1,0]=>2
[1,0,1,1,0,1,0,1,0,1,0,0]=>2
[1,0,1,1,0,1,0,1,1,0,0,0]=>3
[1,0,1,1,0,1,1,0,0,0,1,0]=>3
[1,0,1,1,0,1,1,0,0,1,0,0]=>3
[1,0,1,1,0,1,1,0,1,0,0,0]=>3
[1,0,1,1,0,1,1,1,0,0,0,0]=>4
[1,0,1,1,1,0,0,0,1,0,1,0]=>3
[1,0,1,1,1,0,0,0,1,1,0,0]=>4
[1,0,1,1,1,0,0,1,0,0,1,0]=>3
[1,0,1,1,1,0,0,1,0,1,0,0]=>3
[1,0,1,1,1,0,0,1,1,0,0,0]=>4
[1,0,1,1,1,0,1,0,0,0,1,0]=>3
[1,0,1,1,1,0,1,0,0,1,0,0]=>3
[1,0,1,1,1,0,1,0,1,0,0,0]=>3
[1,0,1,1,1,0,1,1,0,0,0,0]=>4
[1,0,1,1,1,1,0,0,0,0,1,0]=>4
[1,0,1,1,1,1,0,0,0,1,0,0]=>4
[1,0,1,1,1,1,0,0,1,0,0,0]=>4
[1,0,1,1,1,1,0,1,0,0,0,0]=>4
[1,0,1,1,1,1,1,0,0,0,0,0]=>5
[1,1,0,0,1,0,1,0,1,0,1,0]=>2
[1,1,0,0,1,0,1,0,1,1,0,0]=>3
[1,1,0,0,1,0,1,1,0,0,1,0]=>3
[1,1,0,0,1,0,1,1,0,1,0,0]=>3
[1,1,0,0,1,0,1,1,1,0,0,0]=>4
[1,1,0,0,1,1,0,0,1,0,1,0]=>3
[1,1,0,0,1,1,0,0,1,1,0,0]=>4
[1,1,0,0,1,1,0,1,0,0,1,0]=>3
[1,1,0,0,1,1,0,1,0,1,0,0]=>3
[1,1,0,0,1,1,0,1,1,0,0,0]=>4
[1,1,0,0,1,1,1,0,0,0,1,0]=>4
[1,1,0,0,1,1,1,0,0,1,0,0]=>4
[1,1,0,0,1,1,1,0,1,0,0,0]=>4
[1,1,0,0,1,1,1,1,0,0,0,0]=>5
[1,1,0,1,0,0,1,0,1,0,1,0]=>2
[1,1,0,1,0,0,1,0,1,1,0,0]=>3
[1,1,0,1,0,0,1,1,0,0,1,0]=>3
[1,1,0,1,0,0,1,1,0,1,0,0]=>3
[1,1,0,1,0,0,1,1,1,0,0,0]=>4
[1,1,0,1,0,1,0,0,1,0,1,0]=>2
[1,1,0,1,0,1,0,0,1,1,0,0]=>3
[1,1,0,1,0,1,0,1,0,0,1,0]=>2
[1,1,0,1,0,1,0,1,0,1,0,0]=>2
[1,1,0,1,0,1,0,1,1,0,0,0]=>3
[1,1,0,1,0,1,1,0,0,0,1,0]=>3
[1,1,0,1,0,1,1,0,0,1,0,0]=>3
[1,1,0,1,0,1,1,0,1,0,0,0]=>3
[1,1,0,1,0,1,1,1,0,0,0,0]=>4
[1,1,0,1,1,0,0,0,1,0,1,0]=>3
[1,1,0,1,1,0,0,0,1,1,0,0]=>4
[1,1,0,1,1,0,0,1,0,0,1,0]=>3
[1,1,0,1,1,0,0,1,0,1,0,0]=>3
[1,1,0,1,1,0,0,1,1,0,0,0]=>4
[1,1,0,1,1,0,1,0,0,0,1,0]=>3
[1,1,0,1,1,0,1,0,0,1,0,0]=>3
[1,1,0,1,1,0,1,0,1,0,0,0]=>3
[1,1,0,1,1,0,1,1,0,0,0,0]=>4
[1,1,0,1,1,1,0,0,0,0,1,0]=>4
[1,1,0,1,1,1,0,0,0,1,0,0]=>4
[1,1,0,1,1,1,0,0,1,0,0,0]=>4
[1,1,0,1,1,1,0,1,0,0,0,0]=>4
[1,1,0,1,1,1,1,0,0,0,0,0]=>5
[1,1,1,0,0,0,1,0,1,0,1,0]=>3
[1,1,1,0,0,0,1,0,1,1,0,0]=>4
[1,1,1,0,0,0,1,1,0,0,1,0]=>4
[1,1,1,0,0,0,1,1,0,1,0,0]=>4
[1,1,1,0,0,0,1,1,1,0,0,0]=>5
[1,1,1,0,0,1,0,0,1,0,1,0]=>3
[1,1,1,0,0,1,0,0,1,1,0,0]=>4
[1,1,1,0,0,1,0,1,0,0,1,0]=>3
[1,1,1,0,0,1,0,1,0,1,0,0]=>3
[1,1,1,0,0,1,0,1,1,0,0,0]=>4
[1,1,1,0,0,1,1,0,0,0,1,0]=>4
[1,1,1,0,0,1,1,0,0,1,0,0]=>4
[1,1,1,0,0,1,1,0,1,0,0,0]=>4
[1,1,1,0,0,1,1,1,0,0,0,0]=>5
[1,1,1,0,1,0,0,0,1,0,1,0]=>3
[1,1,1,0,1,0,0,0,1,1,0,0]=>4
[1,1,1,0,1,0,0,1,0,0,1,0]=>3
[1,1,1,0,1,0,0,1,0,1,0,0]=>3
[1,1,1,0,1,0,0,1,1,0,0,0]=>4
[1,1,1,0,1,0,1,0,0,0,1,0]=>3
[1,1,1,0,1,0,1,0,0,1,0,0]=>3
[1,1,1,0,1,0,1,0,1,0,0,0]=>3
[1,1,1,0,1,0,1,1,0,0,0,0]=>4
[1,1,1,0,1,1,0,0,0,0,1,0]=>4
[1,1,1,0,1,1,0,0,0,1,0,0]=>4
[1,1,1,0,1,1,0,0,1,0,0,0]=>4
[1,1,1,0,1,1,0,1,0,0,0,0]=>4
[1,1,1,0,1,1,1,0,0,0,0,0]=>5
[1,1,1,1,0,0,0,0,1,0,1,0]=>4
[1,1,1,1,0,0,0,0,1,1,0,0]=>5
[1,1,1,1,0,0,0,1,0,0,1,0]=>4
[1,1,1,1,0,0,0,1,0,1,0,0]=>4
[1,1,1,1,0,0,0,1,1,0,0,0]=>5
[1,1,1,1,0,0,1,0,0,0,1,0]=>4
[1,1,1,1,0,0,1,0,0,1,0,0]=>4
[1,1,1,1,0,0,1,0,1,0,0,0]=>4
[1,1,1,1,0,0,1,1,0,0,0,0]=>5
[1,1,1,1,0,1,0,0,0,0,1,0]=>4
[1,1,1,1,0,1,0,0,0,1,0,0]=>4
[1,1,1,1,0,1,0,0,1,0,0,0]=>4
[1,1,1,1,0,1,0,1,0,0,0,0]=>4
[1,1,1,1,0,1,1,0,0,0,0,0]=>5
[1,1,1,1,1,0,0,0,0,0,1,0]=>5
[1,1,1,1,1,0,0,0,0,1,0,0]=>5
[1,1,1,1,1,0,0,0,1,0,0,0]=>5
[1,1,1,1,1,0,0,1,0,0,0,0]=>5
[1,1,1,1,1,0,1,0,0,0,0,0]=>5
[1,1,1,1,1,1,0,0,0,0,0,0]=>6
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of long tunnels of a Dyck path.
A long tunnel of a Dyck path is a longest sequence of consecutive usual tunnels, i.e., a longest sequence of tunnels where the end point of one is the starting point of the next. See [1] for the definition of tunnels.
A long tunnel of a Dyck path is a longest sequence of consecutive usual tunnels, i.e., a longest sequence of tunnels where the end point of one is the starting point of the next. See [1] for the definition of tunnels.
References
[1] Elizalde, S. Fixed points and excedances in restricted permutations MathSciNet:2880679 arXiv:math/0212221
Code
def merge_one(tns): tns = sorted(tns) for j in range(len(tns)): for i in range(j): t1 = tns[i] t2 = tns[j] if t1[1] == t2[0]: tns.pop(j) tns.pop(i) tns.append((t1[0],t2[1])) return tns return tns def long_tunnels(D): tns = list(D.tunnels()) n = len(tns) + 1 while n > len(tns): n -= 1 tns = merge_one(tns) return tns def statistic(D): return len(long_tunnels(D))
Created
Mar 07, 2016 at 20:02 by Christian Stump
Updated
Jan 13, 2021 at 18:12 by Martin Rubey
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!