Identifier
- St000477: Integer partitions ⟶ ℤ
Values
=>
Cc0002;cc-rep
[2]=>2
[1,1]=>-1
[3]=>3
[2,1]=>0
[1,1,1]=>1
[4]=>4
[3,1]=>1
[2,2]=>-2
[2,1,1]=>0
[1,1,1,1]=>-1
[5]=>5
[4,1]=>2
[3,2]=>0
[3,1,1]=>-1
[2,2,1]=>0
[2,1,1,1]=>0
[1,1,1,1,1]=>1
[6]=>6
[5,1]=>3
[4,2]=>2
[4,1,1]=>-2
[3,3]=>-3
[3,2,1]=>0
[3,1,1,1]=>1
[2,2,2]=>2
[2,2,1,1]=>0
[2,1,1,1,1]=>0
[1,1,1,1,1,1]=>-1
[7]=>7
[6,1]=>4
[5,2]=>4
[5,1,1]=>-3
[4,3]=>0
[4,2,1]=>0
[4,1,1,1]=>2
[3,3,1]=>-1
[3,2,2]=>0
[3,2,1,1]=>0
[3,1,1,1,1]=>-1
[2,2,2,1]=>0
[2,2,1,1,1]=>0
[2,1,1,1,1,1]=>0
[1,1,1,1,1,1,1]=>1
[8]=>8
[7,1]=>5
[6,2]=>6
[6,1,1]=>-4
[5,3]=>3
[5,2,1]=>0
[5,1,1,1]=>3
[4,4]=>-4
[4,3,1]=>0
[4,2,2]=>-2
[4,2,1,1]=>0
[4,1,1,1,1]=>-2
[3,3,2]=>0
[3,3,1,1]=>1
[3,2,2,1]=>0
[3,2,1,1,1]=>0
[3,1,1,1,1,1]=>1
[2,2,2,2]=>-2
[2,2,2,1,1]=>0
[2,2,1,1,1,1]=>0
[2,1,1,1,1,1,1]=>0
[1,1,1,1,1,1,1,1]=>-1
[9]=>9
[8,1]=>6
[7,2]=>8
[7,1,1]=>-5
[6,3]=>6
[6,2,1]=>0
[6,1,1,1]=>4
[5,4]=>0
[5,3,1]=>1
[5,2,2]=>-4
[5,2,1,1]=>0
[5,1,1,1,1]=>-3
[4,4,1]=>-2
[4,3,2]=>0
[4,3,1,1]=>0
[4,2,2,1]=>0
[4,2,1,1,1]=>0
[4,1,1,1,1,1]=>2
[3,3,3]=>3
[3,3,2,1]=>0
[3,3,1,1,1]=>-1
[3,2,2,2]=>0
[3,2,2,1,1]=>0
[3,2,1,1,1,1]=>0
[3,1,1,1,1,1,1]=>-1
[2,2,2,2,1]=>0
[2,2,2,1,1,1]=>0
[2,2,1,1,1,1,1]=>0
[2,1,1,1,1,1,1,1]=>0
[1,1,1,1,1,1,1,1,1]=>1
[10]=>10
[9,1]=>7
[8,2]=>10
[8,1,1]=>-6
[7,3]=>9
[7,2,1]=>0
[7,1,1,1]=>5
[6,4]=>4
[6,3,1]=>2
[6,2,2]=>-6
[6,2,1,1]=>0
[6,1,1,1,1]=>-4
[5,5]=>-5
[5,4,1]=>0
[5,3,2]=>0
[5,3,1,1]=>-1
[5,2,2,1]=>0
[5,2,1,1,1]=>0
[5,1,1,1,1,1]=>3
[4,4,2]=>-2
[4,4,1,1]=>2
[4,3,3]=>0
[4,3,2,1]=>0
[4,3,1,1,1]=>0
[4,2,2,2]=>2
[4,2,2,1,1]=>0
[4,2,1,1,1,1]=>0
[4,1,1,1,1,1,1]=>-2
[3,3,3,1]=>1
[3,3,2,2]=>0
[3,3,2,1,1]=>0
[3,3,1,1,1,1]=>1
[3,2,2,2,1]=>0
[3,2,2,1,1,1]=>0
[3,2,1,1,1,1,1]=>0
[3,1,1,1,1,1,1,1]=>1
[2,2,2,2,2]=>2
[2,2,2,2,1,1]=>0
[2,2,2,1,1,1,1]=>0
[2,2,1,1,1,1,1,1]=>0
[2,1,1,1,1,1,1,1,1]=>0
[1,1,1,1,1,1,1,1,1,1]=>-1
[11]=>11
[10,1]=>8
[9,2]=>12
[9,1,1]=>-7
[8,3]=>12
[8,2,1]=>0
[8,1,1,1]=>6
[7,4]=>8
[7,3,1]=>3
[7,2,2]=>-8
[7,2,1,1]=>0
[7,1,1,1,1]=>-5
[6,5]=>0
[6,4,1]=>2
[6,3,2]=>0
[6,3,1,1]=>-2
[6,2,2,1]=>0
[6,2,1,1,1]=>0
[6,1,1,1,1,1]=>4
[5,5,1]=>-3
[5,4,2]=>0
[5,4,1,1]=>0
[5,3,3]=>-3
[5,3,2,1]=>0
[5,3,1,1,1]=>1
[5,2,2,2]=>4
[5,2,2,1,1]=>0
[5,2,1,1,1,1]=>0
[5,1,1,1,1,1,1]=>-3
[4,4,3]=>0
[4,4,2,1]=>0
[4,4,1,1,1]=>-2
[4,3,3,1]=>0
[4,3,2,2]=>0
[4,3,2,1,1]=>0
[4,3,1,1,1,1]=>0
[4,2,2,2,1]=>0
[4,2,2,1,1,1]=>0
[4,2,1,1,1,1,1]=>0
[4,1,1,1,1,1,1,1]=>2
[3,3,3,2]=>0
[3,3,3,1,1]=>-1
[3,3,2,2,1]=>0
[3,3,2,1,1,1]=>0
[3,3,1,1,1,1,1]=>-1
[3,2,2,2,2]=>0
[3,2,2,2,1,1]=>0
[3,2,2,1,1,1,1]=>0
[3,2,1,1,1,1,1,1]=>0
[3,1,1,1,1,1,1,1,1]=>-1
[2,2,2,2,2,1]=>0
[2,2,2,2,1,1,1]=>0
[2,2,2,1,1,1,1,1]=>0
[2,2,1,1,1,1,1,1,1]=>0
[2,1,1,1,1,1,1,1,1,1]=>0
[1,1,1,1,1,1,1,1,1,1,1]=>1
[12]=>12
[11,1]=>9
[10,2]=>14
[10,1,1]=>-8
[9,3]=>15
[9,2,1]=>0
[9,1,1,1]=>7
[8,4]=>12
[8,3,1]=>4
[8,2,2]=>-10
[8,2,1,1]=>0
[8,1,1,1,1]=>-6
[7,5]=>5
[7,4,1]=>4
[7,3,2]=>0
[7,3,1,1]=>-3
[7,2,2,1]=>0
[7,2,1,1,1]=>0
[7,1,1,1,1,1]=>5
[6,6]=>-6
[6,5,1]=>0
[6,4,2]=>2
[6,4,1,1]=>-2
[6,3,3]=>-6
[6,3,2,1]=>0
[6,3,1,1,1]=>2
[6,2,2,2]=>6
[6,2,2,1,1]=>0
[6,2,1,1,1,1]=>0
[6,1,1,1,1,1,1]=>-4
[5,5,2]=>-4
[5,5,1,1]=>3
[5,4,3]=>0
[5,4,2,1]=>0
[5,4,1,1,1]=>0
[5,3,3,1]=>-1
[5,3,2,2]=>0
[5,3,2,1,1]=>0
[5,3,1,1,1,1]=>-1
[5,2,2,2,1]=>0
[5,2,2,1,1,1]=>0
[5,2,1,1,1,1,1]=>0
[5,1,1,1,1,1,1,1]=>3
[4,4,4]=>4
[4,4,3,1]=>0
[4,4,2,2]=>2
[4,4,2,1,1]=>0
[4,4,1,1,1,1]=>2
[4,3,3,2]=>0
[4,3,3,1,1]=>0
[4,3,2,2,1]=>0
[4,3,2,1,1,1]=>0
[4,3,1,1,1,1,1]=>0
[4,2,2,2,2]=>-2
[4,2,2,2,1,1]=>0
[4,2,2,1,1,1,1]=>0
[4,2,1,1,1,1,1,1]=>0
[4,1,1,1,1,1,1,1,1]=>-2
[3,3,3,3]=>-3
[3,3,3,2,1]=>0
[3,3,3,1,1,1]=>1
[3,3,2,2,2]=>0
[3,3,2,2,1,1]=>0
[3,3,2,1,1,1,1]=>0
[3,3,1,1,1,1,1,1]=>1
[3,2,2,2,2,1]=>0
[3,2,2,2,1,1,1]=>0
[3,2,2,1,1,1,1,1]=>0
[3,2,1,1,1,1,1,1,1]=>0
[3,1,1,1,1,1,1,1,1,1]=>1
[2,2,2,2,2,2]=>-2
[2,2,2,2,2,1,1]=>0
[2,2,2,2,1,1,1,1]=>0
[2,2,2,1,1,1,1,1,1]=>0
[2,2,1,1,1,1,1,1,1,1]=>0
[2,1,1,1,1,1,1,1,1,1,1]=>0
[1,1,1,1,1,1,1,1,1,1,1,1]=>-1
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The weight of a partition according to Alladi.
References
[1] Alladi, K. Partition identities involving gaps and weights MathSciNet:1401759
Code
def statistic(pi): """ The weight according to Alladi. sage: r=8; RR = [pi for pi in Partitions(r) if all(pi[i] - pi[i+1] >= 2 for i in range(len(pi)-1))] sage: sum(weight(pi) for pi in RR) == Partitions(r).cardinality() """ return pi[-1]*prod(pi[i] - pi[i+1] -1 for i in range(len(pi)-1))
Created
May 03, 2016 at 08:01 by Martin Rubey
Updated
May 03, 2016 at 11:59 by Martin Rubey
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!