Identifier
- St000480: Integer partitions ⟶ ℤ
Values
=>
Cc0002;cc-rep
[]=>0
[1]=>0
[2]=>1
[1,1]=>0
[3]=>1
[2,1]=>1
[1,1,1]=>0
[4]=>1
[3,1]=>1
[2,2]=>1
[2,1,1]=>1
[1,1,1,1]=>0
[5]=>1
[4,1]=>1
[3,2]=>1
[3,1,1]=>1
[2,2,1]=>1
[2,1,1,1]=>1
[1,1,1,1,1]=>0
[6]=>1
[5,1]=>1
[4,2]=>2
[4,1,1]=>1
[3,3]=>1
[3,2,1]=>2
[3,1,1,1]=>1
[2,2,2]=>1
[2,2,1,1]=>1
[2,1,1,1,1]=>1
[1,1,1,1,1,1]=>0
[7]=>1
[6,1]=>1
[5,2]=>2
[5,1,1]=>1
[4,3]=>1
[4,2,1]=>2
[4,1,1,1]=>1
[3,3,1]=>1
[3,2,2]=>1
[3,2,1,1]=>2
[3,1,1,1,1]=>1
[2,2,2,1]=>1
[2,2,1,1,1]=>1
[2,1,1,1,1,1]=>1
[1,1,1,1,1,1,1]=>0
[8]=>1
[7,1]=>1
[6,2]=>2
[6,1,1]=>1
[5,3]=>2
[5,2,1]=>2
[5,1,1,1]=>1
[4,4]=>1
[4,3,1]=>1
[4,2,2]=>2
[4,2,1,1]=>2
[4,1,1,1,1]=>1
[3,3,2]=>1
[3,3,1,1]=>1
[3,2,2,1]=>2
[3,2,1,1,1]=>2
[3,1,1,1,1,1]=>1
[2,2,2,2]=>1
[2,2,2,1,1]=>1
[2,2,1,1,1,1]=>1
[2,1,1,1,1,1,1]=>1
[1,1,1,1,1,1,1,1]=>0
[9]=>1
[8,1]=>1
[7,2]=>2
[7,1,1]=>1
[6,3]=>2
[6,2,1]=>2
[6,1,1,1]=>1
[5,4]=>1
[5,3,1]=>2
[5,2,2]=>2
[5,2,1,1]=>2
[5,1,1,1,1]=>1
[4,4,1]=>1
[4,3,2]=>2
[4,3,1,1]=>1
[4,2,2,1]=>2
[4,2,1,1,1]=>2
[4,1,1,1,1,1]=>1
[3,3,3]=>1
[3,3,2,1]=>2
[3,3,1,1,1]=>1
[3,2,2,2]=>1
[3,2,2,1,1]=>2
[3,2,1,1,1,1]=>2
[3,1,1,1,1,1,1]=>1
[2,2,2,2,1]=>1
[2,2,2,1,1,1]=>1
[2,2,1,1,1,1,1]=>1
[2,1,1,1,1,1,1,1]=>1
[1,1,1,1,1,1,1,1,1]=>0
[10]=>1
[9,1]=>1
[8,2]=>2
[8,1,1]=>1
[7,3]=>2
[7,2,1]=>2
[7,1,1,1]=>1
[6,4]=>2
[6,3,1]=>2
[6,2,2]=>2
[6,2,1,1]=>2
[6,1,1,1,1]=>1
[5,5]=>1
[5,4,1]=>1
[5,3,2]=>2
[5,3,1,1]=>2
[5,2,2,1]=>2
[5,2,1,1,1]=>2
[5,1,1,1,1,1]=>1
[4,4,2]=>2
[4,4,1,1]=>1
[4,3,3]=>1
[4,3,2,1]=>3
[4,3,1,1,1]=>1
[4,2,2,2]=>2
[4,2,2,1,1]=>2
[4,2,1,1,1,1]=>2
[4,1,1,1,1,1,1]=>1
[3,3,3,1]=>1
[3,3,2,2]=>1
[3,3,2,1,1]=>2
[3,3,1,1,1,1]=>1
[3,2,2,2,1]=>2
[3,2,2,1,1,1]=>2
[3,2,1,1,1,1,1]=>2
[3,1,1,1,1,1,1,1]=>1
[2,2,2,2,2]=>1
[2,2,2,2,1,1]=>1
[2,2,2,1,1,1,1]=>1
[2,2,1,1,1,1,1,1]=>1
[2,1,1,1,1,1,1,1,1]=>1
[1,1,1,1,1,1,1,1,1,1]=>0
[11]=>1
[10,1]=>1
[9,2]=>2
[9,1,1]=>1
[8,3]=>2
[8,2,1]=>2
[8,1,1,1]=>1
[7,4]=>2
[7,3,1]=>2
[7,2,2]=>2
[7,2,1,1]=>2
[7,1,1,1,1]=>1
[6,5]=>1
[6,4,1]=>2
[6,3,2]=>2
[6,3,1,1]=>2
[6,2,2,1]=>2
[6,2,1,1,1]=>2
[6,1,1,1,1,1]=>1
[5,5,1]=>1
[5,4,2]=>2
[5,4,1,1]=>1
[5,3,3]=>2
[5,3,2,1]=>3
[5,3,1,1,1]=>2
[5,2,2,2]=>2
[5,2,2,1,1]=>2
[5,2,1,1,1,1]=>2
[5,1,1,1,1,1,1]=>1
[4,4,3]=>1
[4,4,2,1]=>2
[4,4,1,1,1]=>1
[4,3,3,1]=>1
[4,3,2,2]=>2
[4,3,2,1,1]=>3
[4,3,1,1,1,1]=>1
[4,2,2,2,1]=>2
[4,2,2,1,1,1]=>2
[4,2,1,1,1,1,1]=>2
[4,1,1,1,1,1,1,1]=>1
[3,3,3,2]=>1
[3,3,3,1,1]=>1
[3,3,2,2,1]=>2
[3,3,2,1,1,1]=>2
[3,3,1,1,1,1,1]=>1
[3,2,2,2,2]=>1
[3,2,2,2,1,1]=>2
[3,2,2,1,1,1,1]=>2
[3,2,1,1,1,1,1,1]=>2
[3,1,1,1,1,1,1,1,1]=>1
[2,2,2,2,2,1]=>1
[2,2,2,2,1,1,1]=>1
[2,2,2,1,1,1,1,1]=>1
[2,2,1,1,1,1,1,1,1]=>1
[2,1,1,1,1,1,1,1,1,1]=>1
[1,1,1,1,1,1,1,1,1,1,1]=>0
[12]=>1
[11,1]=>1
[10,2]=>2
[10,1,1]=>1
[9,3]=>2
[9,2,1]=>2
[9,1,1,1]=>1
[8,4]=>2
[8,3,1]=>2
[8,2,2]=>2
[8,2,1,1]=>2
[8,1,1,1,1]=>1
[7,5]=>2
[7,4,1]=>2
[7,3,2]=>2
[7,3,1,1]=>2
[7,2,2,1]=>2
[7,2,1,1,1]=>2
[7,1,1,1,1,1]=>1
[6,6]=>1
[6,5,1]=>1
[6,4,2]=>3
[6,4,1,1]=>2
[6,3,3]=>2
[6,3,2,1]=>3
[6,3,1,1,1]=>2
[6,2,2,2]=>2
[6,2,2,1,1]=>2
[6,2,1,1,1,1]=>2
[6,1,1,1,1,1,1]=>1
[5,5,2]=>2
[5,5,1,1]=>1
[5,4,3]=>2
[5,4,2,1]=>2
[5,4,1,1,1]=>1
[5,3,3,1]=>2
[5,3,2,2]=>2
[5,3,2,1,1]=>3
[5,3,1,1,1,1]=>2
[5,2,2,2,1]=>2
[5,2,2,1,1,1]=>2
[5,2,1,1,1,1,1]=>2
[5,1,1,1,1,1,1,1]=>1
[4,4,4]=>1
[4,4,3,1]=>1
[4,4,2,2]=>2
[4,4,2,1,1]=>2
[4,4,1,1,1,1]=>1
[4,3,3,2]=>2
[4,3,3,1,1]=>1
[4,3,2,2,1]=>3
[4,3,2,1,1,1]=>3
[4,3,1,1,1,1,1]=>1
[4,2,2,2,2]=>2
[4,2,2,2,1,1]=>2
[4,2,2,1,1,1,1]=>2
[4,2,1,1,1,1,1,1]=>2
[4,1,1,1,1,1,1,1,1]=>1
[3,3,3,3]=>1
[3,3,3,2,1]=>2
[3,3,3,1,1,1]=>1
[3,3,2,2,2]=>1
[3,3,2,2,1,1]=>2
[3,3,2,1,1,1,1]=>2
[3,3,1,1,1,1,1,1]=>1
[3,2,2,2,2,1]=>2
[3,2,2,2,1,1,1]=>2
[3,2,2,1,1,1,1,1]=>2
[3,2,1,1,1,1,1,1,1]=>2
[3,1,1,1,1,1,1,1,1,1]=>1
[2,2,2,2,2,2]=>1
[2,2,2,2,2,1,1]=>1
[2,2,2,2,1,1,1,1]=>1
[2,2,2,1,1,1,1,1,1]=>1
[2,2,1,1,1,1,1,1,1,1]=>1
[2,1,1,1,1,1,1,1,1,1,1]=>1
[1,1,1,1,1,1,1,1,1,1,1,1]=>0
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of lower covers of a partition in dominance order.
According to [1], Corollary 2.4, the maximum number of elements one element (apparently for $n\neq 2$) can cover is
$$ \frac{1}{2}(\sqrt{1+8n}-3) $$
and an element which covers this number of elements is given by $(c+i,c,c-1,\dots,3,2,1)$, where $1\leq i\leq c+2$.
According to [1], Corollary 2.4, the maximum number of elements one element (apparently for $n\neq 2$) can cover is
$$ \frac{1}{2}(\sqrt{1+8n}-3) $$
and an element which covers this number of elements is given by $(c+i,c,c-1,\dots,3,2,1)$, where $1\leq i\leq c+2$.
References
[1] Brylawski, T. The lattice of integer partitions MathSciNet:0325405
Code
@cached_function def P(k): return posets.IntegerPartitionsDominanceOrder(k) def statistic(pi): Q = P(pi.size()) return len(Q.lower_covers(Q(pi)))
Created
May 09, 2016 at 09:22 by Martin Rubey
Updated
Oct 29, 2017 at 21:36 by Martin Rubey
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!