Identifier
- St000531: Integer partitions ⟶ ℤ
Values
=>
Cc0002;cc-rep
[]=>1
[1]=>1
[2]=>2
[1,1]=>2
[3]=>3
[2,1]=>1
[1,1,1]=>3
[4]=>4
[3,1]=>2
[2,2]=>2
[2,1,1]=>2
[1,1,1,1]=>4
[5]=>5
[4,1]=>3
[3,2]=>4
[3,1,1]=>0
[2,2,1]=>4
[2,1,1,1]=>3
[1,1,1,1,1]=>5
[6]=>6
[5,1]=>4
[4,2]=>6
[4,1,1]=>0
[3,3]=>6
[3,2,1]=>1
[3,1,1,1]=>0
[2,2,2]=>6
[2,2,1,1]=>6
[2,1,1,1,1]=>4
[1,1,1,1,1,1]=>6
[7]=>7
[6,1]=>5
[5,2]=>8
[5,1,1]=>0
[4,3]=>9
[4,2,1]=>2
[4,1,1,1]=>0
[3,3,1]=>2
[3,2,2]=>2
[3,2,1,1]=>2
[3,1,1,1,1]=>0
[2,2,2,1]=>9
[2,2,1,1,1]=>8
[2,1,1,1,1,1]=>5
[1,1,1,1,1,1,1]=>7
[8]=>8
[7,1]=>6
[6,2]=>10
[6,1,1]=>0
[5,3]=>12
[5,2,1]=>3
[5,1,1,1]=>0
[4,4]=>12
[4,3,1]=>4
[4,2,2]=>4
[4,2,1,1]=>0
[4,1,1,1,1]=>0
[3,3,2]=>4
[3,3,1,1]=>4
[3,2,2,1]=>4
[3,2,1,1,1]=>3
[3,1,1,1,1,1]=>0
[2,2,2,2]=>12
[2,2,2,1,1]=>12
[2,2,1,1,1,1]=>10
[2,1,1,1,1,1,1]=>6
[1,1,1,1,1,1,1,1]=>8
[9]=>9
[8,1]=>7
[7,2]=>12
[7,1,1]=>0
[6,3]=>15
[6,2,1]=>4
[6,1,1,1]=>0
[5,4]=>16
[5,3,1]=>6
[5,2,2]=>6
[5,2,1,1]=>0
[5,1,1,1,1]=>0
[4,4,1]=>6
[4,3,2]=>8
[4,3,1,1]=>0
[4,2,2,1]=>0
[4,2,1,1,1]=>0
[4,1,1,1,1,1]=>0
[3,3,3]=>6
[3,3,2,1]=>8
[3,3,1,1,1]=>6
[3,2,2,2]=>6
[3,2,2,1,1]=>6
[3,2,1,1,1,1]=>4
[3,1,1,1,1,1,1]=>0
[2,2,2,2,1]=>16
[2,2,2,1,1,1]=>15
[2,2,1,1,1,1,1]=>12
[2,1,1,1,1,1,1,1]=>7
[1,1,1,1,1,1,1,1,1]=>9
[10]=>10
[9,1]=>8
[8,2]=>14
[8,1,1]=>0
[7,3]=>18
[7,2,1]=>5
[7,1,1,1]=>0
[6,4]=>20
[6,3,1]=>8
[6,2,2]=>8
[6,2,1,1]=>0
[6,1,1,1,1]=>0
[5,5]=>20
[5,4,1]=>9
[5,3,2]=>12
[5,3,1,1]=>0
[5,2,2,1]=>0
[5,2,1,1,1]=>0
[5,1,1,1,1,1]=>0
[4,4,2]=>12
[4,4,1,1]=>0
[4,3,3]=>12
[4,3,2,1]=>1
[4,3,1,1,1]=>0
[4,2,2,2]=>0
[4,2,2,1,1]=>0
[4,2,1,1,1,1]=>0
[4,1,1,1,1,1,1]=>0
[3,3,3,1]=>12
[3,3,2,2]=>12
[3,3,2,1,1]=>12
[3,3,1,1,1,1]=>8
[3,2,2,2,1]=>9
[3,2,2,1,1,1]=>8
[3,2,1,1,1,1,1]=>5
[3,1,1,1,1,1,1,1]=>0
[2,2,2,2,2]=>20
[2,2,2,2,1,1]=>20
[2,2,2,1,1,1,1]=>18
[2,2,1,1,1,1,1,1]=>14
[2,1,1,1,1,1,1,1,1]=>8
[1,1,1,1,1,1,1,1,1,1]=>10
[11]=>11
[10,1]=>9
[9,2]=>16
[9,1,1]=>0
[8,3]=>21
[8,2,1]=>6
[8,1,1,1]=>0
[7,4]=>24
[7,3,1]=>10
[7,2,2]=>10
[7,2,1,1]=>0
[7,1,1,1,1]=>0
[6,5]=>25
[6,4,1]=>12
[6,3,2]=>16
[6,3,1,1]=>0
[6,2,2,1]=>0
[6,2,1,1,1]=>0
[6,1,1,1,1,1]=>0
[5,5,1]=>12
[5,4,2]=>18
[5,4,1,1]=>0
[5,3,3]=>18
[5,3,2,1]=>2
[5,3,1,1,1]=>0
[5,2,2,2]=>0
[5,2,2,1,1]=>0
[5,2,1,1,1,1]=>0
[5,1,1,1,1,1,1]=>0
[4,4,3]=>18
[4,4,2,1]=>2
[4,4,1,1,1]=>0
[4,3,3,1]=>2
[4,3,2,2]=>2
[4,3,2,1,1]=>2
[4,3,1,1,1,1]=>0
[4,2,2,2,1]=>0
[4,2,2,1,1,1]=>0
[4,2,1,1,1,1,1]=>0
[4,1,1,1,1,1,1,1]=>0
[3,3,3,2]=>18
[3,3,3,1,1]=>18
[3,3,2,2,1]=>18
[3,3,2,1,1,1]=>16
[3,3,1,1,1,1,1]=>10
[3,2,2,2,2]=>12
[3,2,2,2,1,1]=>12
[3,2,2,1,1,1,1]=>10
[3,2,1,1,1,1,1,1]=>6
[3,1,1,1,1,1,1,1,1]=>0
[2,2,2,2,2,1]=>25
[2,2,2,2,1,1,1]=>24
[2,2,2,1,1,1,1,1]=>21
[2,2,1,1,1,1,1,1,1]=>16
[2,1,1,1,1,1,1,1,1,1]=>9
[1,1,1,1,1,1,1,1,1,1,1]=>11
[12]=>12
[11,1]=>10
[10,2]=>18
[10,1,1]=>0
[9,3]=>24
[9,2,1]=>7
[9,1,1,1]=>0
[8,4]=>28
[8,3,1]=>12
[8,2,2]=>12
[8,2,1,1]=>0
[8,1,1,1,1]=>0
[7,5]=>30
[7,4,1]=>15
[7,3,2]=>20
[7,3,1,1]=>0
[7,2,2,1]=>0
[7,2,1,1,1]=>0
[7,1,1,1,1,1]=>0
[6,6]=>30
[6,5,1]=>16
[6,4,2]=>24
[6,4,1,1]=>0
[6,3,3]=>24
[6,3,2,1]=>3
[6,3,1,1,1]=>0
[6,2,2,2]=>0
[6,2,2,1,1]=>0
[6,2,1,1,1,1]=>0
[6,1,1,1,1,1,1]=>0
[5,5,2]=>24
[5,5,1,1]=>0
[5,4,3]=>27
[5,4,2,1]=>4
[5,4,1,1,1]=>0
[5,3,3,1]=>4
[5,3,2,2]=>4
[5,3,2,1,1]=>0
[5,3,1,1,1,1]=>0
[5,2,2,2,1]=>0
[5,2,2,1,1,1]=>0
[5,2,1,1,1,1,1]=>0
[5,1,1,1,1,1,1,1]=>0
[4,4,4]=>24
[4,4,3,1]=>4
[4,4,2,2]=>4
[4,4,2,1,1]=>4
[4,4,1,1,1,1]=>0
[4,3,3,2]=>4
[4,3,3,1,1]=>4
[4,3,2,2,1]=>4
[4,3,2,1,1,1]=>3
[4,3,1,1,1,1,1]=>0
[4,2,2,2,2]=>0
[4,2,2,2,1,1]=>0
[4,2,2,1,1,1,1]=>0
[4,2,1,1,1,1,1,1]=>0
[4,1,1,1,1,1,1,1,1]=>0
[3,3,3,3]=>24
[3,3,3,2,1]=>27
[3,3,3,1,1,1]=>24
[3,3,2,2,2]=>24
[3,3,2,2,1,1]=>24
[3,3,2,1,1,1,1]=>20
[3,3,1,1,1,1,1,1]=>12
[3,2,2,2,2,1]=>16
[3,2,2,2,1,1,1]=>15
[3,2,2,1,1,1,1,1]=>12
[3,2,1,1,1,1,1,1,1]=>7
[3,1,1,1,1,1,1,1,1,1]=>0
[2,2,2,2,2,2]=>30
[2,2,2,2,2,1,1]=>30
[2,2,2,2,1,1,1,1]=>28
[2,2,2,1,1,1,1,1,1]=>24
[2,2,1,1,1,1,1,1,1,1]=>18
[2,1,1,1,1,1,1,1,1,1,1]=>10
[1,1,1,1,1,1,1,1,1,1,1,1]=>12
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The leading coefficient of the rook polynomial of an integer partition.
Let $m$ be the minimum of the number of parts and the size of the first part of an integer partition $\lambda$. Then this statistic yields the number of ways to place $m$ non-attacking rooks on the Ferrers board of $\lambda$.
Let $m$ be the minimum of the number of parts and the size of the first part of an integer partition $\lambda$. Then this statistic yields the number of ways to place $m$ non-attacking rooks on the Ferrers board of $\lambda$.
References
Code
def statistic(la): return (matrix([[1]*p + [0]*(la[0]-p) for p in la]).rook_vector())[-1]
Created
Jun 10, 2016 at 23:50 by Martin Rubey
Updated
Dec 22, 2020 at 13:32 by Martin Rubey
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!