Identifier
- St000532: Integer partitions ⟶ ℤ
Values
=>
Cc0002;cc-rep
[]=>1
[1]=>2
[2]=>3
[1,1]=>3
[3]=>4
[2,1]=>5
[1,1,1]=>4
[4]=>5
[3,1]=>7
[2,2]=>7
[2,1,1]=>7
[1,1,1,1]=>5
[5]=>6
[4,1]=>9
[3,2]=>10
[3,1,1]=>10
[2,2,1]=>10
[2,1,1,1]=>9
[1,1,1,1,1]=>6
[6]=>7
[5,1]=>11
[4,2]=>13
[4,1,1]=>13
[3,3]=>13
[3,2,1]=>15
[3,1,1,1]=>13
[2,2,2]=>13
[2,2,1,1]=>13
[2,1,1,1,1]=>11
[1,1,1,1,1,1]=>7
[7]=>8
[6,1]=>13
[5,2]=>16
[5,1,1]=>16
[4,3]=>17
[4,2,1]=>20
[4,1,1,1]=>17
[3,3,1]=>20
[3,2,2]=>20
[3,2,1,1]=>20
[3,1,1,1,1]=>16
[2,2,2,1]=>17
[2,2,1,1,1]=>16
[2,1,1,1,1,1]=>13
[1,1,1,1,1,1,1]=>8
[8]=>9
[7,1]=>15
[6,2]=>19
[6,1,1]=>19
[5,3]=>21
[5,2,1]=>25
[5,1,1,1]=>21
[4,4]=>21
[4,3,1]=>27
[4,2,2]=>27
[4,2,1,1]=>27
[4,1,1,1,1]=>21
[3,3,2]=>27
[3,3,1,1]=>27
[3,2,2,1]=>27
[3,2,1,1,1]=>25
[3,1,1,1,1,1]=>19
[2,2,2,2]=>21
[2,2,2,1,1]=>21
[2,2,1,1,1,1]=>19
[2,1,1,1,1,1,1]=>15
[1,1,1,1,1,1,1,1]=>9
[9]=>10
[8,1]=>17
[7,2]=>22
[7,1,1]=>22
[6,3]=>25
[6,2,1]=>30
[6,1,1,1]=>25
[5,4]=>26
[5,3,1]=>34
[5,2,2]=>34
[5,2,1,1]=>34
[5,1,1,1,1]=>26
[4,4,1]=>34
[4,3,2]=>37
[4,3,1,1]=>37
[4,2,2,1]=>37
[4,2,1,1,1]=>34
[4,1,1,1,1,1]=>25
[3,3,3]=>34
[3,3,2,1]=>37
[3,3,1,1,1]=>34
[3,2,2,2]=>34
[3,2,2,1,1]=>34
[3,2,1,1,1,1]=>30
[3,1,1,1,1,1,1]=>22
[2,2,2,2,1]=>26
[2,2,2,1,1,1]=>25
[2,2,1,1,1,1,1]=>22
[2,1,1,1,1,1,1,1]=>17
[1,1,1,1,1,1,1,1,1]=>10
[10]=>11
[9,1]=>19
[8,2]=>25
[8,1,1]=>25
[7,3]=>29
[7,2,1]=>35
[7,1,1,1]=>29
[6,4]=>31
[6,3,1]=>41
[6,2,2]=>41
[6,2,1,1]=>41
[6,1,1,1,1]=>31
[5,5]=>31
[5,4,1]=>43
[5,3,2]=>47
[5,3,1,1]=>47
[5,2,2,1]=>47
[5,2,1,1,1]=>43
[5,1,1,1,1,1]=>31
[4,4,2]=>47
[4,4,1,1]=>47
[4,3,3]=>47
[4,3,2,1]=>52
[4,3,1,1,1]=>47
[4,2,2,2]=>47
[4,2,2,1,1]=>47
[4,2,1,1,1,1]=>41
[4,1,1,1,1,1,1]=>29
[3,3,3,1]=>47
[3,3,2,2]=>47
[3,3,2,1,1]=>47
[3,3,1,1,1,1]=>41
[3,2,2,2,1]=>43
[3,2,2,1,1,1]=>41
[3,2,1,1,1,1,1]=>35
[3,1,1,1,1,1,1,1]=>25
[2,2,2,2,2]=>31
[2,2,2,2,1,1]=>31
[2,2,2,1,1,1,1]=>29
[2,2,1,1,1,1,1,1]=>25
[2,1,1,1,1,1,1,1,1]=>19
[1,1,1,1,1,1,1,1,1,1]=>11
[11]=>12
[10,1]=>21
[9,2]=>28
[9,1,1]=>28
[8,3]=>33
[8,2,1]=>40
[8,1,1,1]=>33
[7,4]=>36
[7,3,1]=>48
[7,2,2]=>48
[7,2,1,1]=>48
[7,1,1,1,1]=>36
[6,5]=>37
[6,4,1]=>52
[6,3,2]=>57
[6,3,1,1]=>57
[6,2,2,1]=>57
[6,2,1,1,1]=>52
[6,1,1,1,1,1]=>37
[5,5,1]=>52
[5,4,2]=>60
[5,4,1,1]=>60
[5,3,3]=>60
[5,3,2,1]=>67
[5,3,1,1,1]=>60
[5,2,2,2]=>60
[5,2,2,1,1]=>60
[5,2,1,1,1,1]=>52
[5,1,1,1,1,1,1]=>36
[4,4,3]=>60
[4,4,2,1]=>67
[4,4,1,1,1]=>60
[4,3,3,1]=>67
[4,3,2,2]=>67
[4,3,2,1,1]=>67
[4,3,1,1,1,1]=>57
[4,2,2,2,1]=>60
[4,2,2,1,1,1]=>57
[4,2,1,1,1,1,1]=>48
[4,1,1,1,1,1,1,1]=>33
[3,3,3,2]=>60
[3,3,3,1,1]=>60
[3,3,2,2,1]=>60
[3,3,2,1,1,1]=>57
[3,3,1,1,1,1,1]=>48
[3,2,2,2,2]=>52
[3,2,2,2,1,1]=>52
[3,2,2,1,1,1,1]=>48
[3,2,1,1,1,1,1,1]=>40
[3,1,1,1,1,1,1,1,1]=>28
[2,2,2,2,2,1]=>37
[2,2,2,2,1,1,1]=>36
[2,2,2,1,1,1,1,1]=>33
[2,2,1,1,1,1,1,1,1]=>28
[2,1,1,1,1,1,1,1,1,1]=>21
[1,1,1,1,1,1,1,1,1,1,1]=>12
[12]=>13
[11,1]=>23
[10,2]=>31
[10,1,1]=>31
[9,3]=>37
[9,2,1]=>45
[9,1,1,1]=>37
[8,4]=>41
[8,3,1]=>55
[8,2,2]=>55
[8,2,1,1]=>55
[8,1,1,1,1]=>41
[7,5]=>43
[7,4,1]=>61
[7,3,2]=>67
[7,3,1,1]=>67
[7,2,2,1]=>67
[7,2,1,1,1]=>61
[7,1,1,1,1,1]=>43
[6,6]=>43
[6,5,1]=>63
[6,4,2]=>73
[6,4,1,1]=>73
[6,3,3]=>73
[6,3,2,1]=>82
[6,3,1,1,1]=>73
[6,2,2,2]=>73
[6,2,2,1,1]=>73
[6,2,1,1,1,1]=>63
[6,1,1,1,1,1,1]=>43
[5,5,2]=>73
[5,5,1,1]=>73
[5,4,3]=>77
[5,4,2,1]=>87
[5,4,1,1,1]=>77
[5,3,3,1]=>87
[5,3,2,2]=>87
[5,3,2,1,1]=>87
[5,3,1,1,1,1]=>73
[5,2,2,2,1]=>77
[5,2,2,1,1,1]=>73
[5,2,1,1,1,1,1]=>61
[5,1,1,1,1,1,1,1]=>41
[4,4,4]=>73
[4,4,3,1]=>87
[4,4,2,2]=>87
[4,4,2,1,1]=>87
[4,4,1,1,1,1]=>73
[4,3,3,2]=>87
[4,3,3,1,1]=>87
[4,3,2,2,1]=>87
[4,3,2,1,1,1]=>82
[4,3,1,1,1,1,1]=>67
[4,2,2,2,2]=>73
[4,2,2,2,1,1]=>73
[4,2,2,1,1,1,1]=>67
[4,2,1,1,1,1,1,1]=>55
[4,1,1,1,1,1,1,1,1]=>37
[3,3,3,3]=>73
[3,3,3,2,1]=>77
[3,3,3,1,1,1]=>73
[3,3,2,2,2]=>73
[3,3,2,2,1,1]=>73
[3,3,2,1,1,1,1]=>67
[3,3,1,1,1,1,1,1]=>55
[3,2,2,2,2,1]=>63
[3,2,2,2,1,1,1]=>61
[3,2,2,1,1,1,1,1]=>55
[3,2,1,1,1,1,1,1,1]=>45
[3,1,1,1,1,1,1,1,1,1]=>31
[2,2,2,2,2,2]=>43
[2,2,2,2,2,1,1]=>43
[2,2,2,2,1,1,1,1]=>41
[2,2,2,1,1,1,1,1,1]=>37
[2,2,1,1,1,1,1,1,1,1]=>31
[2,1,1,1,1,1,1,1,1,1,1]=>23
[1,1,1,1,1,1,1,1,1,1,1,1]=>13
[5,4,3,1]=>114
[5,4,2,2]=>114
[5,4,2,1,1]=>114
[5,3,3,2]=>114
[5,3,3,1,1]=>114
[5,3,2,2,1]=>114
[4,4,3,2]=>114
[4,4,3,1,1]=>114
[4,4,2,2,1]=>114
[4,3,3,2,1]=>114
[5,4,3,2]=>151
[5,4,3,1,1]=>151
[5,4,2,2,1]=>151
[5,3,3,2,1]=>151
[4,4,3,2,1]=>151
[5,4,3,2,1]=>203
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The total number of rook placements on a Ferrers board.
References
Code
def statistic(la): return sum(matrix([[1]*p + [0]*(la[0]-p) for p in la]).rook_vector())
Created
Jun 10, 2016 at 23:59 by Martin Rubey
Updated
Apr 26, 2018 at 07:39 by Martin Rubey
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!