edit this statistic or download as text // json
Identifier
Values
=>
Cc0029;cc-rep
([],1)=>1 ([(0,1)],2)=>2 ([(0,2),(2,1)],3)=>3 ([(0,1),(0,2),(1,3),(2,3)],4)=>4 ([(0,3),(2,1),(3,2)],4)=>4 ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)=>5 ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)=>4 ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)=>5 ([(0,4),(2,3),(3,1),(4,2)],5)=>5 ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)=>5 ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6)=>6 ([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6)=>4 ([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6)=>5 ([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6)=>6 ([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6)=>5 ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6)=>6 ([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6)=>5 ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6)=>6 ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6)=>5 ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6)=>6 ([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6)=>6 ([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6)=>2 ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6)=>6 ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)=>6 ([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6)=>5 ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7)=>7 ([(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1)],7)=>4 ([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2)],7)=>5 ([(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3)],7)=>6 ([(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3),(5,4)],7)=>7 ([(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2),(5,4)],7)=>5 ([(0,4),(1,6),(2,5),(3,5),(4,1),(4,2),(4,3),(5,6)],7)=>6 ([(0,5),(1,6),(2,6),(3,6),(5,1),(5,2),(5,3),(6,4)],7)=>7 ([(0,3),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1),(5,4)],7)=>5 ([(0,5),(1,6),(2,6),(3,6),(4,2),(4,3),(5,1),(5,4)],7)=>6 ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,1),(4,2),(5,6)],7)=>6 ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7)=>7 ([(0,5),(1,6),(2,6),(3,2),(4,1),(5,3),(5,4)],7)=>3 ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7)=>7 ([(0,2),(0,3),(0,5),(1,6),(2,6),(3,6),(4,1),(5,4)],7)=>5 ([(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2)],7)=>6 ([(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2),(5,3)],7)=>7 ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,6)],7)=>5 ([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(6,1)],7)=>6 ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7)=>7 ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(6,5)],7)=>6 ([(0,2),(0,3),(0,4),(2,6),(3,6),(4,6),(5,1),(6,5)],7)=>7 ([(0,2),(0,3),(0,4),(0,5),(2,6),(3,6),(4,6),(5,6),(6,1)],7)=>7 ([(0,2),(0,3),(0,4),(1,6),(2,5),(3,5),(4,1),(5,6)],7)=>2 ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7)=>5 ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7)=>7 ([(0,2),(0,3),(0,4),(2,6),(3,5),(4,5),(5,6),(6,1)],7)=>6 ([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,1),(4,6),(6,5)],7)=>7 ([(0,3),(0,4),(0,5),(1,6),(3,6),(4,6),(5,1),(6,2)],7)=>5 ([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1)],7)=>2 ([(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,1),(4,5),(5,6)],7)=>6 ([(0,2),(0,4),(1,6),(2,5),(3,1),(4,3),(4,5),(5,6)],7)=>5 ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7)=>7 ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,2),(4,6),(6,1)],7)=>6 ([(0,4),(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2)],7)=>2 ([(0,3),(0,4),(1,6),(2,6),(3,5),(4,1),(4,2),(4,5),(5,6)],7)=>7 ([(0,5),(1,6),(2,6),(3,4),(4,2),(5,1),(5,3)],7)=>6 ([(0,3),(0,4),(1,6),(2,5),(3,5),(4,1),(4,2),(5,6)],7)=>5 ([(0,5),(1,6),(2,6),(4,2),(5,1),(5,4),(6,3)],7)=>6 ([(0,4),(0,5),(1,6),(2,6),(4,6),(5,1),(5,2),(6,3)],7)=>6 ([(0,3),(0,4),(1,6),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6)],7)=>5 ([(0,3),(0,4),(1,6),(2,5),(3,2),(4,1),(4,5),(5,6)],7)=>5 ([(0,2),(0,5),(1,6),(2,6),(3,4),(4,1),(5,3)],7)=>6 ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7)=>7 ([(0,2),(0,3),(0,4),(1,5),(2,6),(3,5),(4,1),(5,6)],7)=>5 ([(0,3),(0,5),(2,6),(3,6),(4,1),(5,2),(6,4)],7)=>6 ([(0,4),(0,5),(1,6),(2,6),(3,2),(4,3),(5,1)],7)=>2 ([(0,4),(1,6),(2,6),(3,2),(4,5),(5,1),(5,3)],7)=>6 ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,5),(4,3),(5,6)],7)=>6 ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)=>7 ([(0,4),(0,5),(1,6),(2,6),(4,2),(5,1),(6,3)],7)=>3 ([(0,3),(0,5),(1,6),(3,6),(4,1),(5,4),(6,2)],7)=>6 ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7)=>7
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The number of left modular elements of a lattice.
A pair $(x, y)$ of elements of a lattice $L$ is a modular pair if for every $z\geq y$ we have that $(y\vee x) \wedge z = y \vee (x \wedge z)$. An element $x$ is left-modular if $(x, y)$ is a modular pair for every $y\in L$.
References
[1] Liu, S.-C., Sagan, B. Left-modular elements arXiv:math/0001055
Code
def is_left_modular(L, x):
    for z in L:
        for y in L.principal_order_ideal(z):
            if L.meet(L.join(x,y),z) != L.join(L.meet(x,z),y):
                return False
    return True

def statistic(L):
    return len([x for x in L if is_left_modular(L, x)])
Created
Jul 19, 2016 at 23:49 by Martin Rubey
Updated
Jul 21, 2016 at 10:49 by Martin Rubey