edit this statistic or download as text // json
Identifier
Values
=>
Cc0002;cc-rep
[2]=>1 [1,1]=>0 [3]=>3 [2,1]=>1 [1,1,1]=>0 [4]=>6 [3,1]=>3 [2,2]=>2 [2,1,1]=>1 [1,1,1,1]=>0 [5]=>10 [4,1]=>6 [3,2]=>4 [3,1,1]=>3 [2,2,1]=>2 [2,1,1,1]=>1 [1,1,1,1,1]=>0 [6]=>15 [5,1]=>10 [4,2]=>7 [4,1,1]=>6 [3,3]=>6 [3,2,1]=>4 [3,1,1,1]=>3 [2,2,2]=>3 [2,2,1,1]=>2 [2,1,1,1,1]=>1 [1,1,1,1,1,1]=>0 [7]=>21 [6,1]=>15 [5,2]=>11 [5,1,1]=>10 [4,3]=>9 [4,2,1]=>7 [4,1,1,1]=>6 [3,3,1]=>6 [3,2,2]=>5 [3,2,1,1]=>4 [3,1,1,1,1]=>3 [2,2,2,1]=>3 [2,2,1,1,1]=>2 [2,1,1,1,1,1]=>1 [1,1,1,1,1,1,1]=>0 [8]=>28 [7,1]=>21 [6,2]=>16 [6,1,1]=>15 [5,3]=>13 [5,2,1]=>11 [5,1,1,1]=>10 [4,4]=>12 [4,3,1]=>9 [4,2,2]=>8 [4,2,1,1]=>7 [4,1,1,1,1]=>6 [3,3,2]=>7 [3,3,1,1]=>6 [3,2,2,1]=>5 [3,2,1,1,1]=>4 [3,1,1,1,1,1]=>3 [2,2,2,2]=>4 [2,2,2,1,1]=>3 [2,2,1,1,1,1]=>2 [2,1,1,1,1,1,1]=>1 [1,1,1,1,1,1,1,1]=>0 [9]=>36 [8,1]=>28 [7,2]=>22 [7,1,1]=>21 [6,3]=>18 [6,2,1]=>16 [6,1,1,1]=>15 [5,4]=>16 [5,3,1]=>13 [5,2,2]=>12 [5,2,1,1]=>11 [5,1,1,1,1]=>10 [4,4,1]=>12 [4,3,2]=>10 [4,3,1,1]=>9 [4,2,2,1]=>8 [4,2,1,1,1]=>7 [4,1,1,1,1,1]=>6 [3,3,3]=>9 [3,3,2,1]=>7 [3,3,1,1,1]=>6 [3,2,2,2]=>6 [3,2,2,1,1]=>5 [3,2,1,1,1,1]=>4 [3,1,1,1,1,1,1]=>3 [2,2,2,2,1]=>4 [2,2,2,1,1,1]=>3 [2,2,1,1,1,1,1]=>2 [2,1,1,1,1,1,1,1]=>1 [1,1,1,1,1,1,1,1,1]=>0 [10]=>45 [9,1]=>36 [8,2]=>29 [8,1,1]=>28 [7,3]=>24 [7,2,1]=>22 [7,1,1,1]=>21 [6,4]=>21 [6,3,1]=>18 [6,2,2]=>17 [6,2,1,1]=>16 [6,1,1,1,1]=>15 [5,5]=>20 [5,4,1]=>16 [5,3,2]=>14 [5,3,1,1]=>13 [5,2,2,1]=>12 [5,2,1,1,1]=>11 [5,1,1,1,1,1]=>10 [4,4,2]=>13 [4,4,1,1]=>12 [4,3,3]=>12 [4,3,2,1]=>10 [4,3,1,1,1]=>9 [4,2,2,2]=>9 [4,2,2,1,1]=>8 [4,2,1,1,1,1]=>7 [4,1,1,1,1,1,1]=>6 [3,3,3,1]=>9 [3,3,2,2]=>8 [3,3,2,1,1]=>7 [3,3,1,1,1,1]=>6 [3,2,2,2,1]=>6 [3,2,2,1,1,1]=>5 [3,2,1,1,1,1,1]=>4 [3,1,1,1,1,1,1,1]=>3 [2,2,2,2,2]=>5 [2,2,2,2,1,1]=>4 [2,2,2,1,1,1,1]=>3 [2,2,1,1,1,1,1,1]=>2 [2,1,1,1,1,1,1,1,1]=>1 [1,1,1,1,1,1,1,1,1,1]=>0 [11]=>55 [10,1]=>45 [9,2]=>37 [9,1,1]=>36 [8,3]=>31 [8,2,1]=>29 [8,1,1,1]=>28 [7,4]=>27 [7,3,1]=>24 [7,2,2]=>23 [7,2,1,1]=>22 [7,1,1,1,1]=>21 [6,5]=>25 [6,4,1]=>21 [6,3,2]=>19 [6,3,1,1]=>18 [6,2,2,1]=>17 [6,2,1,1,1]=>16 [6,1,1,1,1,1]=>15 [5,5,1]=>20 [5,4,2]=>17 [5,4,1,1]=>16 [5,3,3]=>16 [5,3,2,1]=>14 [5,3,1,1,1]=>13 [5,2,2,2]=>13 [5,2,2,1,1]=>12 [5,2,1,1,1,1]=>11 [5,1,1,1,1,1,1]=>10 [4,4,3]=>15 [4,4,2,1]=>13 [4,4,1,1,1]=>12 [4,3,3,1]=>12 [4,3,2,2]=>11 [4,3,2,1,1]=>10 [4,3,1,1,1,1]=>9 [4,2,2,2,1]=>9 [4,2,2,1,1,1]=>8 [4,2,1,1,1,1,1]=>7 [4,1,1,1,1,1,1,1]=>6 [3,3,3,2]=>10 [3,3,3,1,1]=>9 [3,3,2,2,1]=>8 [3,3,2,1,1,1]=>7 [3,3,1,1,1,1,1]=>6 [3,2,2,2,2]=>7 [3,2,2,2,1,1]=>6 [3,2,2,1,1,1,1]=>5 [3,2,1,1,1,1,1,1]=>4 [3,1,1,1,1,1,1,1,1]=>3 [2,2,2,2,2,1]=>5 [2,2,2,2,1,1,1]=>4 [2,2,2,1,1,1,1,1]=>3 [2,2,1,1,1,1,1,1,1]=>2 [2,1,1,1,1,1,1,1,1,1]=>1 [1,1,1,1,1,1,1,1,1,1,1]=>0 [12]=>66 [11,1]=>55 [10,2]=>46 [10,1,1]=>45 [9,3]=>39 [9,2,1]=>37 [9,1,1,1]=>36 [8,4]=>34 [8,3,1]=>31 [8,2,2]=>30 [8,2,1,1]=>29 [8,1,1,1,1]=>28 [7,5]=>31 [7,4,1]=>27 [7,3,2]=>25 [7,3,1,1]=>24 [7,2,2,1]=>23 [7,2,1,1,1]=>22 [7,1,1,1,1,1]=>21 [6,6]=>30 [6,5,1]=>25 [6,4,2]=>22 [6,4,1,1]=>21 [6,3,3]=>21 [6,3,2,1]=>19 [6,3,1,1,1]=>18 [6,2,2,2]=>18 [6,2,2,1,1]=>17 [6,2,1,1,1,1]=>16 [6,1,1,1,1,1,1]=>15 [5,5,2]=>21 [5,5,1,1]=>20 [5,4,3]=>19 [5,4,2,1]=>17 [5,4,1,1,1]=>16 [5,3,3,1]=>16 [5,3,2,2]=>15 [5,3,2,1,1]=>14 [5,3,1,1,1,1]=>13 [5,2,2,2,1]=>13 [5,2,2,1,1,1]=>12 [5,2,1,1,1,1,1]=>11 [5,1,1,1,1,1,1,1]=>10 [4,4,4]=>18 [4,4,3,1]=>15 [4,4,2,2]=>14 [4,4,2,1,1]=>13 [4,4,1,1,1,1]=>12 [4,3,3,2]=>13 [4,3,3,1,1]=>12 [4,3,2,2,1]=>11 [4,3,2,1,1,1]=>10 [4,3,1,1,1,1,1]=>9 [4,2,2,2,2]=>10 [4,2,2,2,1,1]=>9 [4,2,2,1,1,1,1]=>8 [4,2,1,1,1,1,1,1]=>7 [4,1,1,1,1,1,1,1,1]=>6 [3,3,3,3]=>12 [3,3,3,2,1]=>10 [3,3,3,1,1,1]=>9 [3,3,2,2,2]=>9 [3,3,2,2,1,1]=>8 [3,3,2,1,1,1,1]=>7 [3,3,1,1,1,1,1,1]=>6 [3,2,2,2,2,1]=>7 [3,2,2,2,1,1,1]=>6 [3,2,2,1,1,1,1,1]=>5 [3,2,1,1,1,1,1,1,1]=>4 [3,1,1,1,1,1,1,1,1,1]=>3 [2,2,2,2,2,2]=>6 [2,2,2,2,2,1,1]=>5 [2,2,2,2,1,1,1,1]=>4 [2,2,2,1,1,1,1,1,1]=>3 [2,2,1,1,1,1,1,1,1,1]=>2 [2,1,1,1,1,1,1,1,1,1,1]=>1 [1,1,1,1,1,1,1,1,1,1,1,1]=>0
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The number of ways to select a row of a Ferrers shape and two cells in this row. Equivalently, if $\lambda = (\lambda_0\geq\lambda_1 \geq \dots\geq\lambda_m)$ is an integer partition, then the statistic is
$$\frac{1}{2} \sum_{i=0}^m \lambda_i(\lambda_i -1).$$
References
[1] Xi, N."The leading coefficient of certain Kazhdan-Lusztig polynomials of the permutation group Sn," , p. 4. Xi, N. The leading coefficient of certain Kazhdan-Lusztig polynomials of the permutation group $S_n$ arXiv:math/0401430
[2] Lusztig, G. Cells in affine Weyl groups MathSciNet:0803338
Code
def statistic(pi):
    return sum(binomial(p, Integer(2)) for p in pi)

Created
Aug 07, 2016 at 13:27 by Martin Rubey
Updated
Sep 07, 2024 at 01:41 by Sara Billey