edit this statistic or download as text // json
Identifier
Values
=>
Cc0002;cc-rep
[1]=>1 [2]=>1 [1,1]=>1 [3]=>1 [2,1]=>0 [1,1,1]=>1 [4]=>1 [3,1]=>1 [2,2]=>2 [2,1,1]=>1 [1,1,1,1]=>1 [5]=>1 [4,1]=>0 [3,2]=>1 [3,1,1]=>2 [2,2,1]=>1 [2,1,1,1]=>0 [1,1,1,1,1]=>1 [6]=>1 [5,1]=>1 [4,2]=>3 [4,1,1]=>2 [3,3]=>3 [3,2,1]=>0 [3,1,1,1]=>2 [2,2,2]=>3 [2,2,1,1]=>3 [2,1,1,1,1]=>1 [1,1,1,1,1,1]=>1 [7]=>1 [6,1]=>0 [5,2]=>2 [5,1,1]=>3 [4,3]=>0 [4,2,1]=>1 [4,1,1,1]=>0 [3,3,1]=>3 [3,2,2]=>3 [3,2,1,1]=>1 [3,1,1,1,1]=>3 [2,2,2,1]=>0 [2,2,1,1,1]=>2 [2,1,1,1,1,1]=>0 [1,1,1,1,1,1,1]=>1 [8]=>1 [7,1]=>1 [6,2]=>4 [6,1,1]=>3 [5,3]=>4 [5,2,1]=>0 [5,1,1,1]=>3 [4,4]=>6 [4,3,1]=>2 [4,2,2]=>8 [4,2,1,1]=>6 [4,1,1,1,1]=>3 [3,3,2]=>6 [3,3,1,1]=>8 [3,2,2,1]=>2 [3,2,1,1,1]=>0 [3,1,1,1,1,1]=>3 [2,2,2,2]=>6 [2,2,2,1,1]=>4 [2,2,1,1,1,1]=>4 [2,1,1,1,1,1,1]=>1 [1,1,1,1,1,1,1,1]=>1 [9]=>1 [8,1]=>0 [7,2]=>3 [7,1,1]=>4 [6,3]=>0 [6,2,1]=>1 [6,1,1,1]=>0 [5,4]=>2 [5,3,1]=>6 [5,2,2]=>8 [5,2,1,1]=>3 [5,1,1,1,1]=>6 [4,4,1]=>4 [4,3,2]=>0 [4,3,1,1]=>0 [4,2,2,1]=>0 [4,2,1,1,1]=>3 [4,1,1,1,1,1]=>0 [3,3,3]=>6 [3,3,2,1]=>0 [3,3,1,1,1]=>8 [3,2,2,2]=>4 [3,2,2,1,1]=>6 [3,2,1,1,1,1]=>1 [3,1,1,1,1,1,1]=>4 [2,2,2,2,1]=>2 [2,2,2,1,1,1]=>0 [2,2,1,1,1,1,1]=>3 [2,1,1,1,1,1,1,1]=>0 [1,1,1,1,1,1,1,1,1]=>1 [10]=>1 [9,1]=>1 [8,2]=>5 [8,1,1]=>4 [7,3]=>5 [7,2,1]=>0 [7,1,1,1]=>4 [6,4]=>10 [6,3,1]=>5 [6,2,2]=>15 [6,2,1,1]=>10 [6,1,1,1,1]=>6 [5,5]=>10 [5,4,1]=>0 [5,3,2]=>10 [5,3,1,1]=>15 [5,2,2,1]=>5 [5,2,1,1,1]=>0 [5,1,1,1,1,1]=>6 [4,4,2]=>20 [4,4,1,1]=>20 [4,3,3]=>10 [4,3,2,1]=>0 [4,3,1,1,1]=>5 [4,2,2,2]=>20 [4,2,2,1,1]=>15 [4,2,1,1,1,1]=>10 [4,1,1,1,1,1,1]=>4 [3,3,3,1]=>10 [3,3,2,2]=>20 [3,3,2,1,1]=>10 [3,3,1,1,1,1]=>15 [3,2,2,2,1]=>0 [3,2,2,1,1,1]=>5 [3,2,1,1,1,1,1]=>0 [3,1,1,1,1,1,1,1]=>4 [2,2,2,2,2]=>10 [2,2,2,2,1,1]=>10 [2,2,2,1,1,1,1]=>5 [2,2,1,1,1,1,1,1]=>5 [2,1,1,1,1,1,1,1,1]=>1 [1,1,1,1,1,1,1,1,1,1]=>1 [11]=>1 [10,1]=>0 [9,2]=>4 [9,1,1]=>5 [8,3]=>0 [8,2,1]=>1 [8,1,1,1]=>0 [7,4]=>5 [7,3,1]=>10 [7,2,2]=>15 [7,2,1,1]=>6 [7,1,1,1,1]=>10 [6,5]=>0 [6,4,1]=>5 [6,3,2]=>0 [6,3,1,1]=>0 [6,2,2,1]=>0 [6,2,1,1,1]=>4 [6,1,1,1,1,1]=>0 [5,5,1]=>10 [5,4,2]=>10 [5,4,1,1]=>5 [5,3,3]=>20 [5,3,2,1]=>0 [5,3,1,1,1]=>20 [5,2,2,2]=>15 [5,2,2,1,1]=>20 [5,2,1,1,1,1]=>4 [5,1,1,1,1,1,1]=>10 [4,4,3]=>10 [4,4,2,1]=>0 [4,4,1,1,1]=>15 [4,3,3,1]=>0 [4,3,2,2]=>0 [4,3,2,1,1]=>0 [4,3,1,1,1,1]=>0 [4,2,2,2,1]=>5 [4,2,2,1,1,1]=>0 [4,2,1,1,1,1,1]=>6 [4,1,1,1,1,1,1,1]=>0 [3,3,3,2]=>10 [3,3,3,1,1]=>20 [3,3,2,2,1]=>10 [3,3,2,1,1,1]=>0 [3,3,1,1,1,1,1]=>15 [3,2,2,2,2]=>10 [3,2,2,2,1,1]=>5 [3,2,2,1,1,1,1]=>10 [3,2,1,1,1,1,1,1]=>1 [3,1,1,1,1,1,1,1,1]=>5 [2,2,2,2,2,1]=>0 [2,2,2,2,1,1,1]=>5 [2,2,2,1,1,1,1,1]=>0 [2,2,1,1,1,1,1,1,1]=>4 [2,1,1,1,1,1,1,1,1,1]=>0 [1,1,1,1,1,1,1,1,1,1,1]=>1 [12]=>1 [11,1]=>1 [10,2]=>6 [10,1,1]=>5 [9,3]=>6 [9,2,1]=>0 [9,1,1,1]=>5 [8,4]=>15 [8,3,1]=>9 [8,2,2]=>24 [8,2,1,1]=>15 [8,1,1,1,1]=>10 [7,5]=>15 [7,4,1]=>0 [7,3,2]=>15 [7,3,1,1]=>24 [7,2,2,1]=>9 [7,2,1,1,1]=>0 [7,1,1,1,1,1]=>10 [6,6]=>20 [6,5,1]=>5 [6,4,2]=>45 [6,4,1,1]=>40 [6,3,3]=>30 [6,3,2,1]=>0 [6,3,1,1,1]=>16 [6,2,2,2]=>45 [6,2,2,1,1]=>36 [6,2,1,1,1,1]=>20 [6,1,1,1,1,1,1]=>10 [5,5,2]=>40 [5,5,1,1]=>45 [5,4,3]=>0 [5,4,2,1]=>5 [5,4,1,1,1]=>0 [5,3,3,1]=>30 [5,3,2,2]=>45 [5,3,2,1,1]=>20 [5,3,1,1,1,1]=>36 [5,2,2,2,1]=>0 [5,2,2,1,1,1]=>16 [5,2,1,1,1,1,1]=>0 [5,1,1,1,1,1,1,1]=>10 [4,4,4]=>30 [4,4,3,1]=>30 [4,4,2,2]=>80 [4,4,2,1,1]=>45 [4,4,1,1,1,1]=>45 [4,3,3,2]=>30 [4,3,3,1,1]=>30 [4,3,2,2,1]=>5 [4,3,2,1,1,1]=>0 [4,3,1,1,1,1,1]=>9 [4,2,2,2,2]=>45 [4,2,2,2,1,1]=>40 [4,2,2,1,1,1,1]=>24 [4,2,1,1,1,1,1,1]=>15 [4,1,1,1,1,1,1,1,1]=>5 [3,3,3,3]=>30 [3,3,3,2,1]=>0 [3,3,3,1,1,1]=>30 [3,3,2,2,2]=>40 [3,3,2,2,1,1]=>45 [3,3,2,1,1,1,1]=>15 [3,3,1,1,1,1,1,1]=>24 [3,2,2,2,2,1]=>5 [3,2,2,2,1,1,1]=>0 [3,2,2,1,1,1,1,1]=>9 [3,2,1,1,1,1,1,1,1]=>0 [3,1,1,1,1,1,1,1,1,1]=>5 [2,2,2,2,2,2]=>20 [2,2,2,2,2,1,1]=>15 [2,2,2,2,1,1,1,1]=>15 [2,2,2,1,1,1,1,1,1]=>6 [2,2,1,1,1,1,1,1,1,1]=>6 [2,1,1,1,1,1,1,1,1,1,1]=>1 [1,1,1,1,1,1,1,1,1,1,1,1]=>1
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The number of self-evacuating tableaux of given shape.
This is the same as the number of standard domino tableaux of the given shape.
References
[1] Stembridge, J. R. Canonical bases and self-evacuating tableaux MathSciNet:1387685
Code
def statistic_alt(la):
    chi = SymmetricGroupRepresentation(la)
    r = abs(ZZ(chi.to_character()(Permutation(range(la.size(),0,-1)))))
    assert r==statistic(la)
    return r

def statistic(la):
    n = la.size()
    la = la + [0]*(n-len(la))

    E_la = sorted([la[j] + n-j-1 for j in range(n) if is_even(la[j] + n-j-1)], reverse=True)
    rE = len(E_la)
    la_e = [ZZ(E_la[i]/2-rE+i+1) for i in range(rE)]
    
    O_la = sorted([la[j] + n-j-2 for j in range(n) if is_even(la[j] +n-j-2)], reverse=True)
    rO = len(O_la)
    la_o = [ZZ(O_la[i]/2-rO+i+1) for i in range(rO)]

    if abs(rE - rO)<=1:
        return (binomial(n//2, sum(la_e))*
                StandardTableaux(la_e).cardinality()*
                StandardTableaux(la_o).cardinality())
    else:
        return 0

Created
Sep 26, 2016 at 23:00 by Martin Rubey
Updated
Sep 26, 2016 at 23:00 by Martin Rubey