Identifier
- St000681: Integer partitions ⟶ ℤ
Values
=>
Cc0002;cc-rep
[2]=>1
[1,1]=>1
[3]=>2
[2,1]=>0
[1,1,1]=>2
[4]=>3
[3,1]=>3
[2,2]=>2
[2,1,1]=>3
[1,1,1,1]=>3
[5]=>4
[4,1]=>2
[3,2]=>0
[3,1,1]=>0
[2,2,1]=>0
[2,1,1,1]=>2
[1,1,1,1,1]=>4
[6]=>5
[5,1]=>5
[4,2]=>4
[4,1,1]=>1
[3,3]=>4
[3,2,1]=>1
[3,1,1,1]=>1
[2,2,2]=>4
[2,2,1,1]=>4
[2,1,1,1,1]=>5
[1,1,1,1,1,1]=>5
[7]=>6
[6,1]=>4
[5,2]=>3
[5,1,1]=>6
[4,3]=>0
[4,2,1]=>5
[4,1,1,1]=>0
[3,3,1]=>3
[3,2,2]=>3
[3,2,1,1]=>5
[3,1,1,1,1]=>6
[2,2,2,1]=>0
[2,2,1,1,1]=>3
[2,1,1,1,1,1]=>4
[1,1,1,1,1,1,1]=>6
[8]=>7
[7,1]=>7
[6,2]=>6
[6,1,1]=>7
[5,3]=>6
[5,2,1]=>7
[5,1,1,1]=>7
[4,4]=>5
[4,3,1]=>4
[4,2,2]=>0
[4,2,1,1]=>1
[4,1,1,1,1]=>7
[3,3,2]=>1
[3,3,1,1]=>0
[3,2,2,1]=>4
[3,2,1,1,1]=>7
[3,1,1,1,1,1]=>7
[2,2,2,2]=>5
[2,2,2,1,1]=>6
[2,2,1,1,1,1]=>6
[2,1,1,1,1,1,1]=>7
[1,1,1,1,1,1,1,1]=>7
[9]=>8
[8,1]=>6
[7,2]=>5
[7,1,1]=>4
[6,3]=>3
[6,2,1]=>3
[6,1,1,1]=>6
[5,4]=>0
[5,3,1]=>1
[5,2,2]=>1
[5,2,1,1]=>0
[5,1,1,1,1]=>0
[4,4,1]=>6
[4,3,2]=>5
[4,3,1,1]=>2
[4,2,2,1]=>2
[4,2,1,1,1]=>0
[4,1,1,1,1,1]=>6
[3,3,3]=>5
[3,3,2,1]=>5
[3,3,1,1,1]=>1
[3,2,2,2]=>6
[3,2,2,1,1]=>1
[3,2,1,1,1,1]=>3
[3,1,1,1,1,1,1]=>4
[2,2,2,2,1]=>0
[2,2,2,1,1,1]=>3
[2,2,1,1,1,1,1]=>5
[2,1,1,1,1,1,1,1]=>6
[1,1,1,1,1,1,1,1,1]=>8
[10]=>9
[9,1]=>9
[8,2]=>8
[8,1,1]=>5
[7,3]=>8
[7,2,1]=>8
[7,1,1,1]=>5
[6,4]=>7
[6,3,1]=>6
[6,2,2]=>8
[6,2,1,1]=>2
[6,1,1,1,1]=>1
[5,5]=>7
[5,4,1]=>5
[5,3,2]=>0
[5,3,1,1]=>5
[5,2,2,1]=>5
[5,2,1,1,1]=>1
[5,1,1,1,1,1]=>1
[4,4,2]=>7
[4,4,1,1]=>7
[4,3,3]=>6
[4,3,2,1]=>1
[4,3,1,1,1]=>5
[4,2,2,2]=>7
[4,2,2,1,1]=>5
[4,2,1,1,1,1]=>2
[4,1,1,1,1,1,1]=>5
[3,3,3,1]=>6
[3,3,2,2]=>7
[3,3,2,1,1]=>0
[3,3,1,1,1,1]=>8
[3,2,2,2,1]=>5
[3,2,2,1,1,1]=>6
[3,2,1,1,1,1,1]=>8
[3,1,1,1,1,1,1,1]=>5
[2,2,2,2,2]=>7
[2,2,2,2,1,1]=>7
[2,2,2,1,1,1,1]=>8
[2,2,1,1,1,1,1,1]=>8
[2,1,1,1,1,1,1,1,1]=>9
[1,1,1,1,1,1,1,1,1,1]=>9
[11]=>10
[10,1]=>8
[9,2]=>7
[9,1,1]=>10
[8,3]=>5
[8,2,1]=>4
[8,1,1,1]=>4
[7,4]=>3
[7,3,1]=>5
[7,2,2]=>7
[7,2,1,1]=>7
[7,1,1,1,1]=>2
[6,5]=>0
[6,4,1]=>1
[6,3,2]=>9
[6,3,1,1]=>1
[6,2,2,1]=>1
[6,2,1,1,1]=>8
[6,1,1,1,1,1]=>0
[5,5,1]=>8
[5,4,2]=>3
[5,4,1,1]=>1
[5,3,3]=>3
[5,3,2,1]=>2
[5,3,1,1,1]=>2
[5,2,2,2]=>2
[5,2,2,1,1]=>2
[5,2,1,1,1,1]=>8
[5,1,1,1,1,1,1]=>2
[4,4,3]=>8
[4,4,2,1]=>4
[4,4,1,1,1]=>2
[4,3,3,1]=>4
[4,3,2,2]=>4
[4,3,2,1,1]=>2
[4,3,1,1,1,1]=>1
[4,2,2,2,1]=>1
[4,2,2,1,1,1]=>1
[4,2,1,1,1,1,1]=>7
[4,1,1,1,1,1,1,1]=>4
[3,3,3,2]=>8
[3,3,3,1,1]=>3
[3,3,2,2,1]=>3
[3,3,2,1,1,1]=>9
[3,3,1,1,1,1,1]=>7
[3,2,2,2,2]=>8
[3,2,2,2,1,1]=>1
[3,2,2,1,1,1,1]=>5
[3,2,1,1,1,1,1,1]=>4
[3,1,1,1,1,1,1,1,1]=>10
[2,2,2,2,2,1]=>0
[2,2,2,2,1,1,1]=>3
[2,2,2,1,1,1,1,1]=>5
[2,2,1,1,1,1,1,1,1]=>7
[2,1,1,1,1,1,1,1,1,1]=>8
[1,1,1,1,1,1,1,1,1,1,1]=>10
[12]=>11
[11,1]=>11
[10,2]=>10
[10,1,1]=>11
[9,3]=>10
[9,2,1]=>6
[9,1,1,1]=>11
[8,4]=>9
[8,3,1]=>8
[8,2,2]=>6
[8,2,1,1]=>6
[8,1,1,1,1]=>3
[7,5]=>9
[7,4,1]=>7
[7,3,2]=>3
[7,3,1,1]=>9
[7,2,2,1]=>8
[7,2,1,1,1]=>9
[7,1,1,1,1,1]=>3
[6,6]=>8
[6,5,1]=>4
[6,4,2]=>0
[6,4,1,1]=>8
[6,3,3]=>0
[6,3,2,1]=>4
[6,3,1,1,1]=>0
[6,2,2,2]=>0
[6,2,2,1,1]=>0
[6,2,1,1,1,1]=>1
[6,1,1,1,1,1,1]=>3
[5,5,2]=>5
[5,5,1,1]=>2
[5,4,3]=>7
[5,4,2,1]=>6
[5,4,1,1,1]=>6
[5,3,3,1]=>1
[5,3,2,2]=>1
[5,3,2,1,1]=>1
[5,3,1,1,1,1]=>0
[5,2,2,2,1]=>6
[5,2,2,1,1,1]=>0
[5,2,1,1,1,1,1]=>9
[5,1,1,1,1,1,1,1]=>3
[4,4,4]=>9
[4,4,3,1]=>1
[4,4,2,2]=>1
[4,4,2,1,1]=>1
[4,4,1,1,1,1]=>0
[4,3,3,2]=>1
[4,3,3,1,1]=>1
[4,3,2,2,1]=>6
[4,3,2,1,1,1]=>4
[4,3,1,1,1,1,1]=>8
[4,2,2,2,2]=>2
[4,2,2,2,1,1]=>8
[4,2,2,1,1,1,1]=>9
[4,2,1,1,1,1,1,1]=>6
[4,1,1,1,1,1,1,1,1]=>11
[3,3,3,3]=>9
[3,3,3,2,1]=>7
[3,3,3,1,1,1]=>0
[3,3,2,2,2]=>5
[3,3,2,2,1,1]=>0
[3,3,2,1,1,1,1]=>3
[3,3,1,1,1,1,1,1]=>6
[3,2,2,2,2,1]=>4
[3,2,2,2,1,1,1]=>7
[3,2,2,1,1,1,1,1]=>8
[3,2,1,1,1,1,1,1,1]=>6
[3,1,1,1,1,1,1,1,1,1]=>11
[2,2,2,2,2,2]=>8
[2,2,2,2,2,1,1]=>9
[2,2,2,2,1,1,1,1]=>9
[2,2,2,1,1,1,1,1,1]=>10
[2,2,1,1,1,1,1,1,1,1]=>10
[2,1,1,1,1,1,1,1,1,1,1]=>11
[1,1,1,1,1,1,1,1,1,1,1,1]=>11
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The Grundy value of Chomp on Ferrers diagrams.
Players take turns and choose a cell of the diagram, cutting off all cells below and to the right of this cell in English notation. The player who is left with the single cell partition looses. The traditional version is played on chocolate bars, see [1].
This statistic is the Grundy value of the partition, that is, the smallest non-negative integer which does not occur as value of a partition obtained by a single move.
Players take turns and choose a cell of the diagram, cutting off all cells below and to the right of this cell in English notation. The player who is left with the single cell partition looses. The traditional version is played on chocolate bars, see [1].
This statistic is the Grundy value of the partition, that is, the smallest non-negative integer which does not occur as value of a partition obtained by a single move.
References
[1] wikipedia:Chomp
Code
@cached_function def statistic(pi): """Return the Grundy value of the Ferrers diagram pi for Chomp. sage: statistic(Partition([1])) 0 sage: statistic(Partition([1,1])) 1 sage: statistic(Partition([2,1])) 0 """ def children(la): for row, col in la.cells(): if (row,col) != (0,0): yield Partition(la[:row] + [min(r, col) for r in la[row:]]) pi = Partition(pi) if pi.size() == 0: return elif pi.size() == 1: return 0 else: l = [statistic(la) for la in children(pi)] i = 0 while i in l: i += 1 return i
Created
Jan 05, 2017 at 20:33 by Martin Rubey
Updated
Jan 05, 2017 at 20:33 by Martin Rubey
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!