Identifier
- St000688: Dyck paths ⟶ ℤ
Values
=>
Cc0005;cc-rep
[1,0]=>0
[1,0,1,0]=>0
[1,1,0,0]=>0
[1,0,1,0,1,0]=>0
[1,0,1,1,0,0]=>1
[1,1,0,0,1,0]=>1
[1,1,0,1,0,0]=>1
[1,1,1,0,0,0]=>0
[1,0,1,0,1,0,1,0]=>0
[1,0,1,0,1,1,0,0]=>2
[1,0,1,1,0,0,1,0]=>0
[1,0,1,1,0,1,0,0]=>2
[1,0,1,1,1,0,0,0]=>1
[1,1,0,0,1,0,1,0]=>2
[1,1,0,0,1,1,0,0]=>1
[1,1,0,1,0,0,1,0]=>2
[1,1,0,1,0,1,0,0]=>1
[1,1,0,1,1,0,0,0]=>1
[1,1,1,0,0,0,1,0]=>1
[1,1,1,0,0,1,0,0]=>1
[1,1,1,0,1,0,0,0]=>1
[1,1,1,1,0,0,0,0]=>0
[1,0,1,0,1,0,1,0,1,0]=>0
[1,0,1,0,1,0,1,1,0,0]=>3
[1,0,1,0,1,1,0,0,1,0]=>1
[1,0,1,0,1,1,0,1,0,0]=>3
[1,0,1,0,1,1,1,0,0,0]=>2
[1,0,1,1,0,0,1,0,1,0]=>1
[1,0,1,1,0,0,1,1,0,0]=>1
[1,0,1,1,0,1,0,0,1,0]=>3
[1,0,1,1,0,1,0,1,0,0]=>2
[1,0,1,1,0,1,1,0,0,0]=>2
[1,0,1,1,1,0,0,0,1,0]=>1
[1,0,1,1,1,0,0,1,0,0]=>1
[1,0,1,1,1,0,1,0,0,0]=>2
[1,0,1,1,1,1,0,0,0,0]=>1
[1,1,0,0,1,0,1,0,1,0]=>3
[1,1,0,0,1,0,1,1,0,0]=>2
[1,1,0,0,1,1,0,0,1,0]=>1
[1,1,0,0,1,1,0,1,0,0]=>2
[1,1,0,0,1,1,1,0,0,0]=>1
[1,1,0,1,0,0,1,0,1,0]=>3
[1,1,0,1,0,0,1,1,0,0]=>2
[1,1,0,1,0,1,0,0,1,0]=>2
[1,1,0,1,0,1,0,1,0,0]=>0
[1,1,0,1,0,1,1,0,0,0]=>2
[1,1,0,1,1,0,0,0,1,0]=>1
[1,1,0,1,1,0,0,1,0,0]=>2
[1,1,0,1,1,0,1,0,0,0]=>2
[1,1,0,1,1,1,0,0,0,0]=>1
[1,1,1,0,0,0,1,0,1,0]=>2
[1,1,1,0,0,0,1,1,0,0]=>1
[1,1,1,0,0,1,0,0,1,0]=>2
[1,1,1,0,0,1,0,1,0,0]=>2
[1,1,1,0,0,1,1,0,0,0]=>1
[1,1,1,0,1,0,0,0,1,0]=>2
[1,1,1,0,1,0,0,1,0,0]=>2
[1,1,1,0,1,0,1,0,0,0]=>2
[1,1,1,0,1,1,0,0,0,0]=>1
[1,1,1,1,0,0,0,0,1,0]=>1
[1,1,1,1,0,0,0,1,0,0]=>1
[1,1,1,1,0,0,1,0,0,0]=>1
[1,1,1,1,0,1,0,0,0,0]=>1
[1,1,1,1,1,0,0,0,0,0]=>0
[1,0,1,0,1,0,1,0,1,0,1,0]=>0
[1,0,1,0,1,0,1,0,1,1,0,0]=>4
[1,0,1,0,1,0,1,1,0,0,1,0]=>2
[1,0,1,0,1,0,1,1,0,1,0,0]=>4
[1,0,1,0,1,0,1,1,1,0,0,0]=>3
[1,0,1,0,1,1,0,0,1,0,1,0]=>0
[1,0,1,0,1,1,0,0,1,1,0,0]=>2
[1,0,1,0,1,1,0,1,0,0,1,0]=>4
[1,0,1,0,1,1,0,1,0,1,0,0]=>3
[1,0,1,0,1,1,0,1,1,0,0,0]=>3
[1,0,1,0,1,1,1,0,0,0,1,0]=>2
[1,0,1,0,1,1,1,0,0,1,0,0]=>2
[1,0,1,0,1,1,1,0,1,0,0,0]=>3
[1,0,1,0,1,1,1,1,0,0,0,0]=>2
[1,0,1,1,0,0,1,0,1,0,1,0]=>2
[1,0,1,1,0,0,1,0,1,1,0,0]=>2
[1,0,1,1,0,0,1,1,0,0,1,0]=>0
[1,0,1,1,0,0,1,1,0,1,0,0]=>2
[1,0,1,1,0,0,1,1,1,0,0,0]=>1
[1,0,1,1,0,1,0,0,1,0,1,0]=>4
[1,0,1,1,0,1,0,0,1,1,0,0]=>3
[1,0,1,1,0,1,0,1,0,0,1,0]=>3
[1,0,1,1,0,1,0,1,0,1,0,0]=>1
[1,0,1,1,0,1,0,1,1,0,0,0]=>3
[1,0,1,1,0,1,1,0,0,0,1,0]=>2
[1,0,1,1,0,1,1,0,0,1,0,0]=>3
[1,0,1,1,0,1,1,0,1,0,0,0]=>3
[1,0,1,1,0,1,1,1,0,0,0,0]=>2
[1,0,1,1,1,0,0,0,1,0,1,0]=>2
[1,0,1,1,1,0,0,0,1,1,0,0]=>1
[1,0,1,1,1,0,0,1,0,0,1,0]=>2
[1,0,1,1,1,0,0,1,0,1,0,0]=>1
[1,0,1,1,1,0,0,1,1,0,0,0]=>1
[1,0,1,1,1,0,1,0,0,0,1,0]=>3
[1,0,1,1,1,0,1,0,0,1,0,0]=>3
[1,0,1,1,1,0,1,0,1,0,0,0]=>3
[1,0,1,1,1,0,1,1,0,0,0,0]=>2
[1,0,1,1,1,1,0,0,0,0,1,0]=>1
[1,0,1,1,1,1,0,0,0,1,0,0]=>1
[1,0,1,1,1,1,0,0,1,0,0,0]=>1
[1,0,1,1,1,1,0,1,0,0,0,0]=>2
[1,0,1,1,1,1,1,0,0,0,0,0]=>1
[1,1,0,0,1,0,1,0,1,0,1,0]=>4
[1,1,0,0,1,0,1,0,1,1,0,0]=>3
[1,1,0,0,1,0,1,1,0,0,1,0]=>2
[1,1,0,0,1,0,1,1,0,1,0,0]=>3
[1,1,0,0,1,0,1,1,1,0,0,0]=>2
[1,1,0,0,1,1,0,0,1,0,1,0]=>2
[1,1,0,0,1,1,0,0,1,1,0,0]=>1
[1,1,0,0,1,1,0,1,0,0,1,0]=>3
[1,1,0,0,1,1,0,1,0,1,0,0]=>3
[1,1,0,0,1,1,0,1,1,0,0,0]=>2
[1,1,0,0,1,1,1,0,0,0,1,0]=>1
[1,1,0,0,1,1,1,0,0,1,0,0]=>1
[1,1,0,0,1,1,1,0,1,0,0,0]=>2
[1,1,0,0,1,1,1,1,0,0,0,0]=>1
[1,1,0,1,0,0,1,0,1,0,1,0]=>4
[1,1,0,1,0,0,1,0,1,1,0,0]=>3
[1,1,0,1,0,0,1,1,0,0,1,0]=>2
[1,1,0,1,0,0,1,1,0,1,0,0]=>3
[1,1,0,1,0,0,1,1,1,0,0,0]=>2
[1,1,0,1,0,1,0,0,1,0,1,0]=>3
[1,1,0,1,0,1,0,0,1,1,0,0]=>3
[1,1,0,1,0,1,0,1,0,0,1,0]=>1
[1,1,0,1,0,1,0,1,0,1,0,0]=>1
[1,1,0,1,0,1,0,1,1,0,0,0]=>2
[1,1,0,1,0,1,1,0,0,0,1,0]=>1
[1,1,0,1,0,1,1,0,0,1,0,0]=>3
[1,1,0,1,0,1,1,0,1,0,0,0]=>2
[1,1,0,1,0,1,1,1,0,0,0,0]=>2
[1,1,0,1,1,0,0,0,1,0,1,0]=>2
[1,1,0,1,1,0,0,0,1,1,0,0]=>1
[1,1,0,1,1,0,0,1,0,0,1,0]=>3
[1,1,0,1,1,0,0,1,0,1,0,0]=>3
[1,1,0,1,1,0,0,1,1,0,0,0]=>2
[1,1,0,1,1,0,1,0,0,0,1,0]=>3
[1,1,0,1,1,0,1,0,0,1,0,0]=>2
[1,1,0,1,1,0,1,0,1,0,0,0]=>2
[1,1,0,1,1,0,1,1,0,0,0,0]=>2
[1,1,0,1,1,1,0,0,0,0,1,0]=>1
[1,1,0,1,1,1,0,0,0,1,0,0]=>1
[1,1,0,1,1,1,0,0,1,0,0,0]=>2
[1,1,0,1,1,1,0,1,0,0,0,0]=>2
[1,1,0,1,1,1,1,0,0,0,0,0]=>1
[1,1,1,0,0,0,1,0,1,0,1,0]=>3
[1,1,1,0,0,0,1,0,1,1,0,0]=>2
[1,1,1,0,0,0,1,1,0,0,1,0]=>1
[1,1,1,0,0,0,1,1,0,1,0,0]=>2
[1,1,1,0,0,0,1,1,1,0,0,0]=>1
[1,1,1,0,0,1,0,0,1,0,1,0]=>3
[1,1,1,0,0,1,0,0,1,1,0,0]=>2
[1,1,1,0,0,1,0,1,0,0,1,0]=>3
[1,1,1,0,0,1,0,1,0,1,0,0]=>2
[1,1,1,0,0,1,0,1,1,0,0,0]=>2
[1,1,1,0,0,1,1,0,0,0,1,0]=>1
[1,1,1,0,0,1,1,0,0,1,0,0]=>2
[1,1,1,0,0,1,1,0,1,0,0,0]=>2
[1,1,1,0,0,1,1,1,0,0,0,0]=>1
[1,1,1,0,1,0,0,0,1,0,1,0]=>3
[1,1,1,0,1,0,0,0,1,1,0,0]=>2
[1,1,1,0,1,0,0,1,0,0,1,0]=>3
[1,1,1,0,1,0,0,1,0,1,0,0]=>2
[1,1,1,0,1,0,0,1,1,0,0,0]=>2
[1,1,1,0,1,0,1,0,0,0,1,0]=>3
[1,1,1,0,1,0,1,0,0,1,0,0]=>2
[1,1,1,0,1,0,1,0,1,0,0,0]=>1
[1,1,1,0,1,0,1,1,0,0,0,0]=>2
[1,1,1,0,1,1,0,0,0,0,1,0]=>1
[1,1,1,0,1,1,0,0,0,1,0,0]=>2
[1,1,1,0,1,1,0,0,1,0,0,0]=>2
[1,1,1,0,1,1,0,1,0,0,0,0]=>2
[1,1,1,0,1,1,1,0,0,0,0,0]=>1
[1,1,1,1,0,0,0,0,1,0,1,0]=>2
[1,1,1,1,0,0,0,0,1,1,0,0]=>1
[1,1,1,1,0,0,0,1,0,0,1,0]=>2
[1,1,1,1,0,0,0,1,0,1,0,0]=>2
[1,1,1,1,0,0,0,1,1,0,0,0]=>1
[1,1,1,1,0,0,1,0,0,0,1,0]=>2
[1,1,1,1,0,0,1,0,0,1,0,0]=>2
[1,1,1,1,0,0,1,0,1,0,0,0]=>2
[1,1,1,1,0,0,1,1,0,0,0,0]=>1
[1,1,1,1,0,1,0,0,0,0,1,0]=>2
[1,1,1,1,0,1,0,0,0,1,0,0]=>2
[1,1,1,1,0,1,0,0,1,0,0,0]=>2
[1,1,1,1,0,1,0,1,0,0,0,0]=>2
[1,1,1,1,0,1,1,0,0,0,0,0]=>1
[1,1,1,1,1,0,0,0,0,0,1,0]=>1
[1,1,1,1,1,0,0,0,0,1,0,0]=>1
[1,1,1,1,1,0,0,0,1,0,0,0]=>1
[1,1,1,1,1,0,0,1,0,0,0,0]=>1
[1,1,1,1,1,0,1,0,0,0,0,0]=>1
[1,1,1,1,1,1,0,0,0,0,0,0]=>0
[1,0,1,0,1,0,1,0,1,0,1,0,1,0]=>0
[1,0,1,0,1,0,1,0,1,0,1,1,0,0]=>5
[1,0,1,0,1,0,1,0,1,1,0,0,1,0]=>3
[1,0,1,0,1,0,1,0,1,1,0,1,0,0]=>5
[1,0,1,0,1,0,1,0,1,1,1,0,0,0]=>4
[1,0,1,0,1,0,1,1,0,0,1,0,1,0]=>1
[1,0,1,0,1,0,1,1,0,0,1,1,0,0]=>3
[1,0,1,0,1,0,1,1,0,1,0,0,1,0]=>5
[1,0,1,0,1,0,1,1,0,1,0,1,0,0]=>4
[1,0,1,0,1,0,1,1,0,1,1,0,0,0]=>4
[1,0,1,0,1,0,1,1,1,0,0,0,1,0]=>3
[1,0,1,0,1,0,1,1,1,0,0,1,0,0]=>3
[1,0,1,0,1,0,1,1,1,0,1,0,0,0]=>4
[1,0,1,0,1,0,1,1,1,1,0,0,0,0]=>3
[1,0,1,0,1,1,0,0,1,0,1,0,1,0]=>1
[1,0,1,0,1,1,0,0,1,0,1,1,0,0]=>2
[1,0,1,0,1,1,0,0,1,1,0,0,1,0]=>1
[1,0,1,0,1,1,0,0,1,1,0,1,0,0]=>2
[1,0,1,0,1,1,0,0,1,1,1,0,0,0]=>2
[1,0,1,0,1,1,0,1,0,0,1,0,1,0]=>5
[1,0,1,0,1,1,0,1,0,0,1,1,0,0]=>4
[1,0,1,0,1,1,0,1,0,1,0,0,1,0]=>4
[1,0,1,0,1,1,0,1,0,1,0,1,0,0]=>2
[1,0,1,0,1,1,0,1,0,1,1,0,0,0]=>4
[1,0,1,0,1,1,0,1,1,0,0,0,1,0]=>3
[1,0,1,0,1,1,0,1,1,0,0,1,0,0]=>4
[1,0,1,0,1,1,0,1,1,0,1,0,0,0]=>4
[1,0,1,0,1,1,0,1,1,1,0,0,0,0]=>3
[1,0,1,0,1,1,1,0,0,0,1,0,1,0]=>2
[1,0,1,0,1,1,1,0,0,0,1,1,0,0]=>2
[1,0,1,0,1,1,1,0,0,1,0,0,1,0]=>2
[1,0,1,0,1,1,1,0,0,1,0,1,0,0]=>1
[1,0,1,0,1,1,1,0,0,1,1,0,0,0]=>2
[1,0,1,0,1,1,1,0,1,0,0,0,1,0]=>4
[1,0,1,0,1,1,1,0,1,0,0,1,0,0]=>4
[1,0,1,0,1,1,1,0,1,0,1,0,0,0]=>4
[1,0,1,0,1,1,1,0,1,1,0,0,0,0]=>3
[1,0,1,0,1,1,1,1,0,0,0,0,1,0]=>2
[1,0,1,0,1,1,1,1,0,0,0,1,0,0]=>2
[1,0,1,0,1,1,1,1,0,0,1,0,0,0]=>2
[1,0,1,0,1,1,1,1,0,1,0,0,0,0]=>3
[1,0,1,0,1,1,1,1,1,0,0,0,0,0]=>2
[1,0,1,1,0,0,1,0,1,0,1,0,1,0]=>3
[1,0,1,1,0,0,1,0,1,0,1,1,0,0]=>3
[1,0,1,1,0,0,1,0,1,1,0,0,1,0]=>1
[1,0,1,1,0,0,1,0,1,1,0,1,0,0]=>3
[1,0,1,1,0,0,1,0,1,1,1,0,0,0]=>2
[1,0,1,1,0,0,1,1,0,0,1,0,1,0]=>1
[1,0,1,1,0,0,1,1,0,0,1,1,0,0]=>1
[1,0,1,1,0,0,1,1,0,1,0,0,1,0]=>3
[1,0,1,1,0,0,1,1,0,1,0,1,0,0]=>2
[1,0,1,1,0,0,1,1,0,1,1,0,0,0]=>2
[1,0,1,1,0,0,1,1,1,0,0,0,1,0]=>1
[1,0,1,1,0,0,1,1,1,0,0,1,0,0]=>1
[1,0,1,1,0,0,1,1,1,0,1,0,0,0]=>2
[1,0,1,1,0,0,1,1,1,1,0,0,0,0]=>1
[1,0,1,1,0,1,0,0,1,0,1,0,1,0]=>5
[1,0,1,1,0,1,0,0,1,0,1,1,0,0]=>4
[1,0,1,1,0,1,0,0,1,1,0,0,1,0]=>3
[1,0,1,1,0,1,0,0,1,1,0,1,0,0]=>4
[1,0,1,1,0,1,0,0,1,1,1,0,0,0]=>3
[1,0,1,1,0,1,0,1,0,0,1,0,1,0]=>4
[1,0,1,1,0,1,0,1,0,0,1,1,0,0]=>4
[1,0,1,1,0,1,0,1,0,1,0,0,1,0]=>0
[1,0,1,1,0,1,0,1,0,1,0,1,0,0]=>2
[1,0,1,1,0,1,0,1,0,1,1,0,0,0]=>3
[1,0,1,1,0,1,0,1,1,0,0,0,1,0]=>2
[1,0,1,1,0,1,0,1,1,0,0,1,0,0]=>4
[1,0,1,1,0,1,0,1,1,0,1,0,0,0]=>3
[1,0,1,1,0,1,0,1,1,1,0,0,0,0]=>3
[1,0,1,1,0,1,1,0,0,0,1,0,1,0]=>2
[1,0,1,1,0,1,1,0,0,0,1,1,0,0]=>2
[1,0,1,1,0,1,1,0,0,1,0,0,1,0]=>4
[1,0,1,1,0,1,1,0,0,1,0,1,0,0]=>4
[1,0,1,1,0,1,1,0,0,1,1,0,0,0]=>3
[1,0,1,1,0,1,1,0,1,0,0,0,1,0]=>4
[1,0,1,1,0,1,1,0,1,0,0,1,0,0]=>3
[1,0,1,1,0,1,1,0,1,0,1,0,0,0]=>3
[1,0,1,1,0,1,1,0,1,1,0,0,0,0]=>3
[1,0,1,1,0,1,1,1,0,0,0,0,1,0]=>2
[1,0,1,1,0,1,1,1,0,0,0,1,0,0]=>2
[1,0,1,1,0,1,1,1,0,0,1,0,0,0]=>3
[1,0,1,1,0,1,1,1,0,1,0,0,0,0]=>3
[1,0,1,1,0,1,1,1,1,0,0,0,0,0]=>2
[1,0,1,1,1,0,0,0,1,0,1,0,1,0]=>3
[1,0,1,1,1,0,0,0,1,0,1,1,0,0]=>2
[1,0,1,1,1,0,0,0,1,1,0,0,1,0]=>1
[1,0,1,1,1,0,0,0,1,1,0,1,0,0]=>2
[1,0,1,1,1,0,0,0,1,1,1,0,0,0]=>1
[1,0,1,1,1,0,0,1,0,0,1,0,1,0]=>3
[1,0,1,1,1,0,0,1,0,0,1,1,0,0]=>2
[1,0,1,1,1,0,0,1,0,1,0,0,1,0]=>2
[1,0,1,1,1,0,0,1,0,1,0,1,0,0]=>1
[1,0,1,1,1,0,0,1,0,1,1,0,0,0]=>2
[1,0,1,1,1,0,0,1,1,0,0,0,1,0]=>1
[1,0,1,1,1,0,0,1,1,0,0,1,0,0]=>2
[1,0,1,1,1,0,0,1,1,0,1,0,0,0]=>2
[1,0,1,1,1,0,0,1,1,1,0,0,0,0]=>1
[1,0,1,1,1,0,1,0,0,0,1,0,1,0]=>4
[1,0,1,1,1,0,1,0,0,0,1,1,0,0]=>3
[1,0,1,1,1,0,1,0,0,1,0,0,1,0]=>4
[1,0,1,1,1,0,1,0,0,1,0,1,0,0]=>3
[1,0,1,1,1,0,1,0,0,1,1,0,0,0]=>3
[1,0,1,1,1,0,1,0,1,0,0,0,1,0]=>4
[1,0,1,1,1,0,1,0,1,0,0,1,0,0]=>3
[1,0,1,1,1,0,1,0,1,0,1,0,0,0]=>2
[1,0,1,1,1,0,1,0,1,1,0,0,0,0]=>3
[1,0,1,1,1,0,1,1,0,0,0,0,1,0]=>2
[1,0,1,1,1,0,1,1,0,0,0,1,0,0]=>3
[1,0,1,1,1,0,1,1,0,0,1,0,0,0]=>3
[1,0,1,1,1,0,1,1,0,1,0,0,0,0]=>3
[1,0,1,1,1,0,1,1,1,0,0,0,0,0]=>2
[1,0,1,1,1,1,0,0,0,0,1,0,1,0]=>2
[1,0,1,1,1,1,0,0,0,0,1,1,0,0]=>1
[1,0,1,1,1,1,0,0,0,1,0,0,1,0]=>2
[1,0,1,1,1,1,0,0,0,1,0,1,0,0]=>2
[1,0,1,1,1,1,0,0,0,1,1,0,0,0]=>1
[1,0,1,1,1,1,0,0,1,0,0,0,1,0]=>2
[1,0,1,1,1,1,0,0,1,0,0,1,0,0]=>2
[1,0,1,1,1,1,0,0,1,0,1,0,0,0]=>2
[1,0,1,1,1,1,0,0,1,1,0,0,0,0]=>1
[1,0,1,1,1,1,0,1,0,0,0,0,1,0]=>3
[1,0,1,1,1,1,0,1,0,0,0,1,0,0]=>3
[1,0,1,1,1,1,0,1,0,0,1,0,0,0]=>3
[1,0,1,1,1,1,0,1,0,1,0,0,0,0]=>3
[1,0,1,1,1,1,0,1,1,0,0,0,0,0]=>2
[1,0,1,1,1,1,1,0,0,0,0,0,1,0]=>1
[1,0,1,1,1,1,1,0,0,0,0,1,0,0]=>1
[1,0,1,1,1,1,1,0,0,0,1,0,0,0]=>1
[1,0,1,1,1,1,1,0,0,1,0,0,0,0]=>1
[1,0,1,1,1,1,1,0,1,0,0,0,0,0]=>2
[1,0,1,1,1,1,1,1,0,0,0,0,0,0]=>1
[1,1,0,0,1,0,1,0,1,0,1,0,1,0]=>5
[1,1,0,0,1,0,1,0,1,0,1,1,0,0]=>4
[1,1,0,0,1,0,1,0,1,1,0,0,1,0]=>3
[1,1,0,0,1,0,1,0,1,1,0,1,0,0]=>4
[1,1,0,0,1,0,1,0,1,1,1,0,0,0]=>3
[1,1,0,0,1,0,1,1,0,0,1,0,1,0]=>2
[1,1,0,0,1,0,1,1,0,0,1,1,0,0]=>2
[1,1,0,0,1,0,1,1,0,1,0,0,1,0]=>4
[1,1,0,0,1,0,1,1,0,1,0,1,0,0]=>4
[1,1,0,0,1,0,1,1,0,1,1,0,0,0]=>3
[1,1,0,0,1,0,1,1,1,0,0,0,1,0]=>2
[1,1,0,0,1,0,1,1,1,0,0,1,0,0]=>2
[1,1,0,0,1,0,1,1,1,0,1,0,0,0]=>3
[1,1,0,0,1,0,1,1,1,1,0,0,0,0]=>2
[1,1,0,0,1,1,0,0,1,0,1,0,1,0]=>3
[1,1,0,0,1,1,0,0,1,0,1,1,0,0]=>2
[1,1,0,0,1,1,0,0,1,1,0,0,1,0]=>1
[1,1,0,0,1,1,0,0,1,1,0,1,0,0]=>2
[1,1,0,0,1,1,0,0,1,1,1,0,0,0]=>1
[1,1,0,0,1,1,0,1,0,0,1,0,1,0]=>4
[1,1,0,0,1,1,0,1,0,0,1,1,0,0]=>3
[1,1,0,0,1,1,0,1,0,1,0,0,1,0]=>4
[1,1,0,0,1,1,0,1,0,1,0,1,0,0]=>3
[1,1,0,0,1,1,0,1,0,1,1,0,0,0]=>3
[1,1,0,0,1,1,0,1,1,0,0,0,1,0]=>2
[1,1,0,0,1,1,0,1,1,0,0,1,0,0]=>3
[1,1,0,0,1,1,0,1,1,0,1,0,0,0]=>3
[1,1,0,0,1,1,0,1,1,1,0,0,0,0]=>2
[1,1,0,0,1,1,1,0,0,0,1,0,1,0]=>2
[1,1,0,0,1,1,1,0,0,0,1,1,0,0]=>1
[1,1,0,0,1,1,1,0,0,1,0,0,1,0]=>2
[1,1,0,0,1,1,1,0,0,1,0,1,0,0]=>2
[1,1,0,0,1,1,1,0,0,1,1,0,0,0]=>1
[1,1,0,0,1,1,1,0,1,0,0,0,1,0]=>3
[1,1,0,0,1,1,1,0,1,0,0,1,0,0]=>3
[1,1,0,0,1,1,1,0,1,0,1,0,0,0]=>3
[1,1,0,0,1,1,1,0,1,1,0,0,0,0]=>2
[1,1,0,0,1,1,1,1,0,0,0,0,1,0]=>1
[1,1,0,0,1,1,1,1,0,0,0,1,0,0]=>1
[1,1,0,0,1,1,1,1,0,0,1,0,0,0]=>1
[1,1,0,0,1,1,1,1,0,1,0,0,0,0]=>2
[1,1,0,0,1,1,1,1,1,0,0,0,0,0]=>1
[1,1,0,1,0,0,1,0,1,0,1,0,1,0]=>5
[1,1,0,1,0,0,1,0,1,0,1,1,0,0]=>4
[1,1,0,1,0,0,1,0,1,1,0,0,1,0]=>3
[1,1,0,1,0,0,1,0,1,1,0,1,0,0]=>4
[1,1,0,1,0,0,1,0,1,1,1,0,0,0]=>3
[1,1,0,1,0,0,1,1,0,0,1,0,1,0]=>2
[1,1,0,1,0,0,1,1,0,0,1,1,0,0]=>2
[1,1,0,1,0,0,1,1,0,1,0,0,1,0]=>4
[1,1,0,1,0,0,1,1,0,1,0,1,0,0]=>4
[1,1,0,1,0,0,1,1,0,1,1,0,0,0]=>3
[1,1,0,1,0,0,1,1,1,0,0,0,1,0]=>2
[1,1,0,1,0,0,1,1,1,0,0,1,0,0]=>2
[1,1,0,1,0,0,1,1,1,0,1,0,0,0]=>3
[1,1,0,1,0,0,1,1,1,1,0,0,0,0]=>2
[1,1,0,1,0,1,0,0,1,0,1,0,1,0]=>4
[1,1,0,1,0,1,0,0,1,0,1,1,0,0]=>4
[1,1,0,1,0,1,0,0,1,1,0,0,1,0]=>2
[1,1,0,1,0,1,0,0,1,1,0,1,0,0]=>4
[1,1,0,1,0,1,0,0,1,1,1,0,0,0]=>3
[1,1,0,1,0,1,0,1,0,0,1,0,1,0]=>2
[1,1,0,1,0,1,0,1,0,0,1,1,0,0]=>3
[1,1,0,1,0,1,0,1,0,1,0,0,1,0]=>2
[1,1,0,1,0,1,0,1,0,1,0,1,0,0]=>1
[1,1,0,1,0,1,0,1,0,1,1,0,0,0]=>3
[1,1,0,1,0,1,0,1,1,0,0,0,1,0]=>1
[1,1,0,1,0,1,0,1,1,0,0,1,0,0]=>3
[1,1,0,1,0,1,0,1,1,0,1,0,0,0]=>3
[1,1,0,1,0,1,0,1,1,1,0,0,0,0]=>2
[1,1,0,1,0,1,1,0,0,0,1,0,1,0]=>1
[1,1,0,1,0,1,1,0,0,0,1,1,0,0]=>2
[1,1,0,1,0,1,1,0,0,1,0,0,1,0]=>4
[1,1,0,1,0,1,1,0,0,1,0,1,0,0]=>3
[1,1,0,1,0,1,1,0,0,1,1,0,0,0]=>3
[1,1,0,1,0,1,1,0,1,0,0,0,1,0]=>3
[1,1,0,1,0,1,1,0,1,0,0,1,0,0]=>2
[1,1,0,1,0,1,1,0,1,0,1,0,0,0]=>3
[1,1,0,1,0,1,1,0,1,1,0,0,0,0]=>2
[1,1,0,1,0,1,1,1,0,0,0,0,1,0]=>2
[1,1,0,1,0,1,1,1,0,0,0,1,0,0]=>2
[1,1,0,1,0,1,1,1,0,0,1,0,0,0]=>3
[1,1,0,1,0,1,1,1,0,1,0,0,0,0]=>2
[1,1,0,1,0,1,1,1,1,0,0,0,0,0]=>2
[1,1,0,1,1,0,0,0,1,0,1,0,1,0]=>3
[1,1,0,1,1,0,0,0,1,0,1,1,0,0]=>2
[1,1,0,1,1,0,0,0,1,1,0,0,1,0]=>1
[1,1,0,1,1,0,0,0,1,1,0,1,0,0]=>2
[1,1,0,1,1,0,0,0,1,1,1,0,0,0]=>1
[1,1,0,1,1,0,0,1,0,0,1,0,1,0]=>4
[1,1,0,1,1,0,0,1,0,0,1,1,0,0]=>3
[1,1,0,1,1,0,0,1,0,1,0,0,1,0]=>4
[1,1,0,1,1,0,0,1,0,1,0,1,0,0]=>3
[1,1,0,1,1,0,0,1,0,1,1,0,0,0]=>3
[1,1,0,1,1,0,0,1,1,0,0,0,1,0]=>2
[1,1,0,1,1,0,0,1,1,0,0,1,0,0]=>3
[1,1,0,1,1,0,0,1,1,0,1,0,0,0]=>3
[1,1,0,1,1,0,0,1,1,1,0,0,0,0]=>2
[1,1,0,1,1,0,1,0,0,0,1,0,1,0]=>4
[1,1,0,1,1,0,1,0,0,0,1,1,0,0]=>3
[1,1,0,1,1,0,1,0,0,1,0,0,1,0]=>3
[1,1,0,1,1,0,1,0,0,1,0,1,0,0]=>2
[1,1,0,1,1,0,1,0,0,1,1,0,0,0]=>3
[1,1,0,1,1,0,1,0,1,0,0,0,1,0]=>3
[1,1,0,1,1,0,1,0,1,0,0,1,0,0]=>3
[1,1,0,1,1,0,1,0,1,0,1,0,0,0]=>2
[1,1,0,1,1,0,1,0,1,1,0,0,0,0]=>2
[1,1,0,1,1,0,1,1,0,0,0,0,1,0]=>2
[1,1,0,1,1,0,1,1,0,0,0,1,0,0]=>3
[1,1,0,1,1,0,1,1,0,0,1,0,0,0]=>3
[1,1,0,1,1,0,1,1,0,1,0,0,0,0]=>2
[1,1,0,1,1,0,1,1,1,0,0,0,0,0]=>2
[1,1,0,1,1,1,0,0,0,0,1,0,1,0]=>2
[1,1,0,1,1,1,0,0,0,0,1,1,0,0]=>1
[1,1,0,1,1,1,0,0,0,1,0,0,1,0]=>2
[1,1,0,1,1,1,0,0,0,1,0,1,0,0]=>2
[1,1,0,1,1,1,0,0,0,1,1,0,0,0]=>1
[1,1,0,1,1,1,0,0,1,0,0,0,1,0]=>3
[1,1,0,1,1,1,0,0,1,0,0,1,0,0]=>3
[1,1,0,1,1,1,0,0,1,0,1,0,0,0]=>3
[1,1,0,1,1,1,0,0,1,1,0,0,0,0]=>2
[1,1,0,1,1,1,0,1,0,0,0,0,1,0]=>3
[1,1,0,1,1,1,0,1,0,0,0,1,0,0]=>3
[1,1,0,1,1,1,0,1,0,0,1,0,0,0]=>3
[1,1,0,1,1,1,0,1,0,1,0,0,0,0]=>2
[1,1,0,1,1,1,0,1,1,0,0,0,0,0]=>2
[1,1,0,1,1,1,1,0,0,0,0,0,1,0]=>1
[1,1,0,1,1,1,1,0,0,0,0,1,0,0]=>1
[1,1,0,1,1,1,1,0,0,0,1,0,0,0]=>1
[1,1,0,1,1,1,1,0,0,1,0,0,0,0]=>2
[1,1,0,1,1,1,1,0,1,0,0,0,0,0]=>2
[1,1,0,1,1,1,1,1,0,0,0,0,0,0]=>1
[1,1,1,0,0,0,1,0,1,0,1,0,1,0]=>4
[1,1,1,0,0,0,1,0,1,0,1,1,0,0]=>3
[1,1,1,0,0,0,1,0,1,1,0,0,1,0]=>2
[1,1,1,0,0,0,1,0,1,1,0,1,0,0]=>3
[1,1,1,0,0,0,1,0,1,1,1,0,0,0]=>2
[1,1,1,0,0,0,1,1,0,0,1,0,1,0]=>2
[1,1,1,0,0,0,1,1,0,0,1,1,0,0]=>1
[1,1,1,0,0,0,1,1,0,1,0,0,1,0]=>3
[1,1,1,0,0,0,1,1,0,1,0,1,0,0]=>3
[1,1,1,0,0,0,1,1,0,1,1,0,0,0]=>2
[1,1,1,0,0,0,1,1,1,0,0,0,1,0]=>1
[1,1,1,0,0,0,1,1,1,0,0,1,0,0]=>1
[1,1,1,0,0,0,1,1,1,0,1,0,0,0]=>2
[1,1,1,0,0,0,1,1,1,1,0,0,0,0]=>1
[1,1,1,0,0,1,0,0,1,0,1,0,1,0]=>4
[1,1,1,0,0,1,0,0,1,0,1,1,0,0]=>3
[1,1,1,0,0,1,0,0,1,1,0,0,1,0]=>2
[1,1,1,0,0,1,0,0,1,1,0,1,0,0]=>3
[1,1,1,0,0,1,0,0,1,1,1,0,0,0]=>2
[1,1,1,0,0,1,0,1,0,0,1,0,1,0]=>4
[1,1,1,0,0,1,0,1,0,0,1,1,0,0]=>3
[1,1,1,0,0,1,0,1,0,1,0,0,1,0]=>3
[1,1,1,0,0,1,0,1,0,1,0,1,0,0]=>3
[1,1,1,0,0,1,0,1,0,1,1,0,0,0]=>2
[1,1,1,0,0,1,0,1,1,0,0,0,1,0]=>2
[1,1,1,0,0,1,0,1,1,0,0,1,0,0]=>3
[1,1,1,0,0,1,0,1,1,0,1,0,0,0]=>2
[1,1,1,0,0,1,0,1,1,1,0,0,0,0]=>2
[1,1,1,0,0,1,1,0,0,0,1,0,1,0]=>2
[1,1,1,0,0,1,1,0,0,0,1,1,0,0]=>1
[1,1,1,0,0,1,1,0,0,1,0,0,1,0]=>3
[1,1,1,0,0,1,1,0,0,1,0,1,0,0]=>3
[1,1,1,0,0,1,1,0,0,1,1,0,0,0]=>2
[1,1,1,0,0,1,1,0,1,0,0,0,1,0]=>3
[1,1,1,0,0,1,1,0,1,0,0,1,0,0]=>3
[1,1,1,0,0,1,1,0,1,0,1,0,0,0]=>2
[1,1,1,0,0,1,1,0,1,1,0,0,0,0]=>2
[1,1,1,0,0,1,1,1,0,0,0,0,1,0]=>1
[1,1,1,0,0,1,1,1,0,0,0,1,0,0]=>1
[1,1,1,0,0,1,1,1,0,0,1,0,0,0]=>2
[1,1,1,0,0,1,1,1,0,1,0,0,0,0]=>2
[1,1,1,0,0,1,1,1,1,0,0,0,0,0]=>1
[1,1,1,0,1,0,0,0,1,0,1,0,1,0]=>4
[1,1,1,0,1,0,0,0,1,0,1,1,0,0]=>3
[1,1,1,0,1,0,0,0,1,1,0,0,1,0]=>2
[1,1,1,0,1,0,0,0,1,1,0,1,0,0]=>3
[1,1,1,0,1,0,0,0,1,1,1,0,0,0]=>2
[1,1,1,0,1,0,0,1,0,0,1,0,1,0]=>4
[1,1,1,0,1,0,0,1,0,0,1,1,0,0]=>3
[1,1,1,0,1,0,0,1,0,1,0,0,1,0]=>3
[1,1,1,0,1,0,0,1,0,1,0,1,0,0]=>3
[1,1,1,0,1,0,0,1,0,1,1,0,0,0]=>2
[1,1,1,0,1,0,0,1,1,0,0,0,1,0]=>2
[1,1,1,0,1,0,0,1,1,0,0,1,0,0]=>3
[1,1,1,0,1,0,0,1,1,0,1,0,0,0]=>2
[1,1,1,0,1,0,0,1,1,1,0,0,0,0]=>2
[1,1,1,0,1,0,1,0,0,0,1,0,1,0]=>4
[1,1,1,0,1,0,1,0,0,0,1,1,0,0]=>3
[1,1,1,0,1,0,1,0,0,1,0,0,1,0]=>3
[1,1,1,0,1,0,1,0,0,1,0,1,0,0]=>3
[1,1,1,0,1,0,1,0,0,1,1,0,0,0]=>2
[1,1,1,0,1,0,1,0,1,0,0,0,1,0]=>2
[1,1,1,0,1,0,1,0,1,0,0,1,0,0]=>2
[1,1,1,0,1,0,1,0,1,0,1,0,0,0]=>0
[1,1,1,0,1,0,1,0,1,1,0,0,0,0]=>2
[1,1,1,0,1,0,1,1,0,0,0,0,1,0]=>2
[1,1,1,0,1,0,1,1,0,0,0,1,0,0]=>3
[1,1,1,0,1,0,1,1,0,0,1,0,0,0]=>2
[1,1,1,0,1,0,1,1,0,1,0,0,0,0]=>2
[1,1,1,0,1,0,1,1,1,0,0,0,0,0]=>2
[1,1,1,0,1,1,0,0,0,0,1,0,1,0]=>2
[1,1,1,0,1,1,0,0,0,0,1,1,0,0]=>1
[1,1,1,0,1,1,0,0,0,1,0,0,1,0]=>3
[1,1,1,0,1,1,0,0,0,1,0,1,0,0]=>3
[1,1,1,0,1,1,0,0,0,1,1,0,0,0]=>2
[1,1,1,0,1,1,0,0,1,0,0,0,1,0]=>3
[1,1,1,0,1,1,0,0,1,0,0,1,0,0]=>3
[1,1,1,0,1,1,0,0,1,0,1,0,0,0]=>2
[1,1,1,0,1,1,0,0,1,1,0,0,0,0]=>2
[1,1,1,0,1,1,0,1,0,0,0,0,1,0]=>3
[1,1,1,0,1,1,0,1,0,0,0,1,0,0]=>3
[1,1,1,0,1,1,0,1,0,0,1,0,0,0]=>2
[1,1,1,0,1,1,0,1,0,1,0,0,0,0]=>2
[1,1,1,0,1,1,0,1,1,0,0,0,0,0]=>2
[1,1,1,0,1,1,1,0,0,0,0,0,1,0]=>1
[1,1,1,0,1,1,1,0,0,0,0,1,0,0]=>1
[1,1,1,0,1,1,1,0,0,0,1,0,0,0]=>2
[1,1,1,0,1,1,1,0,0,1,0,0,0,0]=>2
[1,1,1,0,1,1,1,0,1,0,0,0,0,0]=>2
[1,1,1,0,1,1,1,1,0,0,0,0,0,0]=>1
[1,1,1,1,0,0,0,0,1,0,1,0,1,0]=>3
[1,1,1,1,0,0,0,0,1,0,1,1,0,0]=>2
[1,1,1,1,0,0,0,0,1,1,0,0,1,0]=>1
[1,1,1,1,0,0,0,0,1,1,0,1,0,0]=>2
[1,1,1,1,0,0,0,0,1,1,1,0,0,0]=>1
[1,1,1,1,0,0,0,1,0,0,1,0,1,0]=>3
[1,1,1,1,0,0,0,1,0,0,1,1,0,0]=>2
[1,1,1,1,0,0,0,1,0,1,0,0,1,0]=>3
[1,1,1,1,0,0,0,1,0,1,0,1,0,0]=>2
[1,1,1,1,0,0,0,1,0,1,1,0,0,0]=>2
[1,1,1,1,0,0,0,1,1,0,0,0,1,0]=>1
[1,1,1,1,0,0,0,1,1,0,0,1,0,0]=>2
[1,1,1,1,0,0,0,1,1,0,1,0,0,0]=>2
[1,1,1,1,0,0,0,1,1,1,0,0,0,0]=>1
[1,1,1,1,0,0,1,0,0,0,1,0,1,0]=>3
[1,1,1,1,0,0,1,0,0,0,1,1,0,0]=>2
[1,1,1,1,0,0,1,0,0,1,0,0,1,0]=>3
[1,1,1,1,0,0,1,0,0,1,0,1,0,0]=>2
[1,1,1,1,0,0,1,0,0,1,1,0,0,0]=>2
[1,1,1,1,0,0,1,0,1,0,0,0,1,0]=>3
[1,1,1,1,0,0,1,0,1,0,0,1,0,0]=>2
[1,1,1,1,0,0,1,0,1,0,1,0,0,0]=>2
[1,1,1,1,0,0,1,0,1,1,0,0,0,0]=>2
[1,1,1,1,0,0,1,1,0,0,0,0,1,0]=>1
[1,1,1,1,0,0,1,1,0,0,0,1,0,0]=>2
[1,1,1,1,0,0,1,1,0,0,1,0,0,0]=>2
[1,1,1,1,0,0,1,1,0,1,0,0,0,0]=>2
[1,1,1,1,0,0,1,1,1,0,0,0,0,0]=>1
[1,1,1,1,0,1,0,0,0,0,1,0,1,0]=>3
[1,1,1,1,0,1,0,0,0,0,1,1,0,0]=>2
[1,1,1,1,0,1,0,0,0,1,0,0,1,0]=>3
[1,1,1,1,0,1,0,0,0,1,0,1,0,0]=>2
[1,1,1,1,0,1,0,0,0,1,1,0,0,0]=>2
[1,1,1,1,0,1,0,0,1,0,0,0,1,0]=>3
[1,1,1,1,0,1,0,0,1,0,0,1,0,0]=>2
[1,1,1,1,0,1,0,0,1,0,1,0,0,0]=>2
[1,1,1,1,0,1,0,0,1,1,0,0,0,0]=>2
[1,1,1,1,0,1,0,1,0,0,0,0,1,0]=>3
[1,1,1,1,0,1,0,1,0,0,0,1,0,0]=>2
[1,1,1,1,0,1,0,1,0,0,1,0,0,0]=>2
[1,1,1,1,0,1,0,1,0,1,0,0,0,0]=>2
[1,1,1,1,0,1,0,1,1,0,0,0,0,0]=>2
[1,1,1,1,0,1,1,0,0,0,0,0,1,0]=>1
[1,1,1,1,0,1,1,0,0,0,0,1,0,0]=>2
[1,1,1,1,0,1,1,0,0,0,1,0,0,0]=>2
[1,1,1,1,0,1,1,0,0,1,0,0,0,0]=>2
[1,1,1,1,0,1,1,0,1,0,0,0,0,0]=>2
[1,1,1,1,0,1,1,1,0,0,0,0,0,0]=>1
[1,1,1,1,1,0,0,0,0,0,1,0,1,0]=>2
[1,1,1,1,1,0,0,0,0,0,1,1,0,0]=>1
[1,1,1,1,1,0,0,0,0,1,0,0,1,0]=>2
[1,1,1,1,1,0,0,0,0,1,0,1,0,0]=>2
[1,1,1,1,1,0,0,0,0,1,1,0,0,0]=>1
[1,1,1,1,1,0,0,0,1,0,0,0,1,0]=>2
[1,1,1,1,1,0,0,0,1,0,0,1,0,0]=>2
[1,1,1,1,1,0,0,0,1,0,1,0,0,0]=>2
[1,1,1,1,1,0,0,0,1,1,0,0,0,0]=>1
[1,1,1,1,1,0,0,1,0,0,0,0,1,0]=>2
[1,1,1,1,1,0,0,1,0,0,0,1,0,0]=>2
[1,1,1,1,1,0,0,1,0,0,1,0,0,0]=>2
[1,1,1,1,1,0,0,1,0,1,0,0,0,0]=>2
[1,1,1,1,1,0,0,1,1,0,0,0,0,0]=>1
[1,1,1,1,1,0,1,0,0,0,0,0,1,0]=>2
[1,1,1,1,1,0,1,0,0,0,0,1,0,0]=>2
[1,1,1,1,1,0,1,0,0,0,1,0,0,0]=>2
[1,1,1,1,1,0,1,0,0,1,0,0,0,0]=>2
[1,1,1,1,1,0,1,0,1,0,0,0,0,0]=>2
[1,1,1,1,1,0,1,1,0,0,0,0,0,0]=>1
[1,1,1,1,1,1,0,0,0,0,0,0,1,0]=>1
[1,1,1,1,1,1,0,0,0,0,0,1,0,0]=>1
[1,1,1,1,1,1,0,0,0,0,1,0,0,0]=>1
[1,1,1,1,1,1,0,0,0,1,0,0,0,0]=>1
[1,1,1,1,1,1,0,0,1,0,0,0,0,0]=>1
[1,1,1,1,1,1,0,1,0,0,0,0,0,0]=>1
[1,1,1,1,1,1,1,0,0,0,0,0,0,0]=>0
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The global dimension minus the dominant dimension of the LNakayama algebra associated to a Dyck path.
The global dimension is given by St000684The global dimension of the LNakayama algebra associated to a Dyck path. and the dominant dimension is given by St000685The dominant dimension of the LNakayama algebra associated to a Dyck path.. To every Dyck path there is an LNakayama algebra associated as described in St000684The global dimension of the LNakayama algebra associated to a Dyck path..
Dyck paths for which the global dimension and the dominant dimension of the the LNakayama algebra coincide and both dimensions at least $2$ correspond to the LNakayama algebras that are higher Auslander algebras in the sense of [1].
The global dimension is given by St000684The global dimension of the LNakayama algebra associated to a Dyck path. and the dominant dimension is given by St000685The dominant dimension of the LNakayama algebra associated to a Dyck path.. To every Dyck path there is an LNakayama algebra associated as described in St000684The global dimension of the LNakayama algebra associated to a Dyck path..
Dyck paths for which the global dimension and the dominant dimension of the the LNakayama algebra coincide and both dimensions at least $2$ correspond to the LNakayama algebras that are higher Auslander algebras in the sense of [1].
References
[1] Iyama, O. Auslander correspondence MathSciNet:2298820
Code
BuildSequencesLNak:=function(n) local all,range,len,new,seq,i,sel; all:=[[1]]; range:=[2..n]; for len in [1..n-1] do new:=[]; for seq in all do sel:=Filtered(range, x->x<=1+seq[1]); for i in sel do Add(new,Concatenation([i],seq)); od; od; all:=new; od; return all; end; DeclareOperation("ProjToInjNak", [IsList]); InstallMethod(ProjToInjNak, "for a representation of a quiver", [IsList],0,function(L) local list, n, temp1, Liste_d, j, i, k, r, kk; list:=L; n:=Size(L); temp1:=[]; Liste_d:=[]; for j in [1..n] do for k in L do r:=(j-k) mod n; if r=0 then r:=n; fi; if k>=L[r] then Append(temp1,[k]); fi; od; kk:=Minimum(temp1); temp1:=[]; Append(Liste_d,[kk]); od; return(Liste_d); end ); DeclareOperation("domdimlist", [IsList]); InstallMethod(domdimlist, "for a representation of a quiver", [IsList],0,function(L) local list, n, Liste_d, i, Expr1, Expr2, Expr3, r, s, List1, List2, List_not_in_List2, m, f, g, x, y, j, List_for_dom, temp2, dd, z; list:=L; n:=Size(L); Liste_d:=ProjToInjNak(L); List1:=[]; List2:=[]; for i in [1..n] do r:=i mod n; if r =0 then r:=n; fi; s:=(i+1) mod n; if s = 0 then s:=n; fi; if Liste_d[s]<=Liste_d[r] then Append(List1,[i-1]); fi; od; for i in [1..n] do r:=i mod n; if r =0 then r:=n; fi; s:=(i-1) mod n; if s = 0 then s:=n; fi; if L[s]<=L[r] then Append(List2,[i-1]); fi; od; List_not_in_List2:=[]; for i in [0..n-1] do if (i in List2)=false then Append(List_not_in_List2,[i]); fi; od; List_for_dom:=[]; m:=Size(List_not_in_List2); for j in List_not_in_List2 do Append(List_for_dom,[[[j+L[j+1]-1,L[j+1]]]]); od; f := function (x,y) local c; c:=(x-y) mod n; if c=0 then c:=n; fi; z:=(x+1) mod n; if z=0 then z:=n; fi; return([c,Liste_d[z]-y]); end; for r in [1..m] do s:=Size(List_for_dom[r]); while (f(List_for_dom[r][s][1],List_for_dom[r][s][2])[1] mod n in List1) = true do Append(List_for_dom[r],[f(List_for_dom[r][s][1],List_for_dom[r][s][2])]); s:=Size(List_for_dom[r]); od; s:=0; od; temp2:=[]; for i in [1..Size(List_for_dom)] do Append(temp2,[Size(List_for_dom[i])]); od; dd:=Minimum(temp2); return(dd); end ); DeclareOperation("gldim", [IsList]); InstallMethod(gldim, "for a representation of a quiver", [IsList],0,function(L) local list, n, i, j, f, temp, temp2, temp3, u; list:=L; n:=Size(L); f := function (x,y) local c, z; c:=(x+y) mod n; if c=0 then c:=n; fi; z:=(x+1) mod n; if z=0 then z:=n; fi; return([c,list[z]-y]); end; temp2:=[]; for i in [0..n-1] do Append(temp2,[[i,1]]); od; temp:=[]; for i in [0..n-1] do u:=temp2[i+1]; Append(temp,[[u]]); od; for i in [0..n-1] do j:=1; while j<(2*n+3) do Append(temp[i+1],[f(temp[i+1][j][1],temp[i+1][j][2])]); j:=j+1; od; od; temp3:=[]; for i in [1..n] do temp2:=[]; for j in [1..(2*n+3)] do if temp[i][j][2]=0 then Append(temp2,[j]); fi; od; if Size(temp2)>0 then u:=Minimum(temp2); Append(temp3,[u]); else temp3:="inf"; break; fi; od; if IsString(temp3)=false then temp3:=(Maximum(temp3))-2; fi; return(temp3); end );
Created
Jan 12, 2017 at 14:05 by Rene Marczinzik
Updated
Jan 12, 2017 at 15:19 by Christian Stump
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!