edit this statistic or download as text // json
Identifier
Values
=>
Cc0002;cc-rep
[]=>1 [1]=>1 [2]=>3 [1,1]=>1 [3]=>10 [2,1]=>8 [1,1,1]=>1 [4]=>35 [3,1]=>45 [2,2]=>20 [2,1,1]=>15 [1,1,1,1]=>1 [5]=>126 [4,1]=>224 [3,2]=>175 [3,1,1]=>126 [2,2,1]=>75 [2,1,1,1]=>24 [1,1,1,1,1]=>1 [6]=>462 [5,1]=>1050 [4,2]=>1134 [4,1,1]=>840 [3,3]=>490 [3,2,1]=>896 [3,1,1,1]=>280 [2,2,2]=>175 [2,2,1,1]=>189 [2,1,1,1,1]=>35 [1,1,1,1,1,1]=>1 [7]=>1716 [6,1]=>4752 [5,2]=>6468 [5,1,1]=>4950 [4,3]=>4704 [4,2,1]=>7350 [4,1,1,1]=>2400 [3,3,1]=>3528 [3,2,2]=>2646 [3,2,1,1]=>2940 [3,1,1,1,1]=>540 [2,2,2,1]=>784 [2,2,1,1,1]=>392 [2,1,1,1,1,1]=>48 [1,1,1,1,1,1,1]=>1 [8]=>6435 [7,1]=>21021 [6,2]=>34320 [6,1,1]=>27027 [5,3]=>33264 [5,2,1]=>50688 [5,1,1,1]=>17325 [4,4]=>13860 [4,3,1]=>41580 [4,2,2]=>25872 [4,2,1,1]=>29700 [4,1,1,1,1]=>5775 [3,3,2]=>15876 [3,3,1,1]=>15120 [3,2,2,1]=>14700 [3,2,1,1,1]=>7680 [3,1,1,1,1,1]=>945 [2,2,2,2]=>1764 [2,2,2,1,1]=>2352 [2,2,1,1,1,1]=>720 [2,1,1,1,1,1,1]=>63 [1,1,1,1,1,1,1,1]=>1 [9]=>24310 [8,1]=>91520 [7,2]=>173745 [7,1,1]=>140140 [6,3]=>205920 [6,2,1]=>315315 [6,1,1,1]=>112112 [5,4]=>141570 [5,3,1]=>347490 [5,2,2]=>205920 [5,2,1,1]=>243243 [5,1,1,1,1]=>50050 [4,4,1]=>152460 [4,3,2]=>221760 [4,3,1,1]=>213840 [4,2,2,1]=>171072 [4,2,1,1,1]=>93555 [4,1,1,1,1,1]=>12320 [3,3,3]=>41580 [3,3,2,1]=>110880 [3,3,1,1,1]=>49500 [3,2,2,2]=>38808 [3,2,2,1,1]=>53460 [3,2,1,1,1,1]=>17325 [3,1,1,1,1,1,1]=>1540 [2,2,2,2,1]=>8820 [2,2,2,1,1,1]=>5760 [2,2,1,1,1,1,1]=>1215 [2,1,1,1,1,1,1,1]=>80 [1,1,1,1,1,1,1,1,1]=>1 [10]=>92378 [9,1]=>393822 [8,2]=>850850 [8,1,1]=>700128 [7,3]=>1179750 [7,2,1]=>1830400 [7,1,1,1]=>672672 [6,4]=>1061775 [6,3,1]=>2477475 [6,2,2]=>1447875 [6,2,1,1]=>1751750 [6,1,1,1,1]=>378378 [5,5]=>429429 [5,4,1]=>1812096 [5,3,2]=>2123550 [5,3,1,1]=>2081079 [5,2,2,1]=>1576575 [5,2,1,1,1]=>896896 [5,1,1,1,1,1]=>126126 [4,4,2]=>1019304 [4,4,1,1]=>943800 [4,3,3]=>707850 [4,3,2,1]=>1812096 [4,3,1,1,1]=>825825 [4,2,2,2]=>514800 [4,2,2,1,1]=>729729 [4,2,1,1,1,1]=>250250 [4,1,1,1,1,1,1]=>24024 [3,3,3,1]=>381150 [3,3,2,2]=>365904 [3,3,2,1,1]=>490050 [3,3,1,1,1,1]=>136125 [3,2,2,2,1]=>228096 [3,2,2,1,1,1]=>155925 [3,2,1,1,1,1,1]=>35200 [3,1,1,1,1,1,1,1]=>2376 [2,2,2,2,2]=>19404 [2,2,2,2,1,1]=>29700 [2,2,2,1,1,1,1]=>12375 [2,2,1,1,1,1,1,1]=>1925 [2,1,1,1,1,1,1,1,1]=>99 [1,1,1,1,1,1,1,1,1,1]=>1 [11]=>352716 [10,1]=>1679600 [9,2]=>4064632 [9,1,1]=>3401190 [8,3]=>6417840 [8,2,1]=>10108098 [8,1,1,1]=>3818880 [7,4]=>6952660 [7,3,1]=>16044600 [7,2,2]=>9359350 [7,2,1,1]=>11552112 [7,1,1,1,1]=>2598960 [6,5]=>4580576 [6,4,1]=>15459444 [6,3,2]=>16988400 [6,3,1,1]=>16912896 [6,2,2,1]=>12584000 [6,2,1,1,1]=>7399392 [6,1,1,1,1,1]=>1100736 [5,5,1]=>6441435 [5,4,2]=>13803075 [5,4,1,1]=>12882870 [5,3,3]=>7786350 [5,3,2,1]=>19819800 [5,3,1,1,1]=>9249240 [5,2,2,2]=>5308875 [5,2,2,1,1]=>7707700 [5,2,1,1,1,1]=>2774772 [5,1,1,1,1,1,1]=>286650 [4,4,3]=>4723719 [4,4,2,1]=>9815520 [4,4,1,1,1]=>4294290 [4,3,3,1]=>7474896 [4,3,2,2]=>6795360 [4,3,2,1,1]=>9249240 [4,3,1,1,1,1]=>2642640 [4,2,2,2,1]=>3468465 [4,2,2,1,1,1]=>2466464 [4,2,1,1,1,1,1]=>594594 [4,1,1,1,1,1,1,1]=>43680 [3,3,3,2]=>1868724 [3,3,3,1,1]=>2076360 [3,3,2,2,1]=>2548260 [3,3,2,1,1,1]=>1698840 [3,3,1,1,1,1,1]=>330330 [3,2,2,2,2]=>566280 [3,2,2,2,1,1]=>891891 [3,2,2,1,1,1,1]=>393250 [3,2,1,1,1,1,1,1]=>66066 [3,1,1,1,1,1,1,1,1]=>3510 [2,2,2,2,2,1]=>104544 [2,2,2,2,1,1,1]=>81675 [2,2,2,1,1,1,1,1]=>24200 [2,2,1,1,1,1,1,1,1]=>2904 [2,1,1,1,1,1,1,1,1,1]=>120 [1,1,1,1,1,1,1,1,1,1,1]=>1 [12]=>1352078 [11,1]=>7113106 [10,2]=>19046664 [10,1,1]=>16166150 [9,3]=>33625592 [9,2,1]=>53747200 [9,1,1,1]=>20785050 [8,4]=>42031990 [8,3,1]=>97274034 [8,2,2]=>56904848 [8,2,1,1]=>71424990 [8,1,1,1,1]=>16628040 [7,5]=>35837802 [7,4,1]=>113265152 [7,3,2]=>121671550 [7,3,1,1]=>122872464 [7,2,2,1]=>90972882 [7,2,1,1,1]=>54991872 [7,1,1,1,1,1]=>8576568 [6,6]=>14158144 [6,5,1]=>77427350 [6,4,2]=>131405274 [6,4,1,1]=>123883760 [6,3,3]=>69526600 [6,3,2,1]=>177988096 [6,3,1,1,1]=>84948864 [6,2,2,2]=>46796750 [6,2,2,1,1]=>69312672 [6,2,1,1,1,1]=>25989600 [6,1,1,1,1,1,1]=>2858856 [5,5,2]=>57257200 [5,5,1,1]=>52702650 [5,4,3]=>73289216 [5,4,2,1]=>150300150 [5,4,1,1,1]=>66626560 [5,3,3,1]=>92756664 [5,3,2,2]=>82818450 [5,3,2,1,1]=>114514400 [5,3,1,1,1,1]=>33729696 [5,2,2,2,1]=>40268800 [5,2,2,1,1,1]=>29597568 [5,2,1,1,1,1,1]=>7547904 [5,1,1,1,1,1,1,1]=>600600 [4,4,4]=>13026013 [4,4,3,1]=>57972915 [4,4,2,2]=>42942900 [4,4,2,1,1]=>57972915 [4,4,1,1,1,1]=>15940925 [4,3,3,2]=>41409225 [4,3,3,1,1]=>46378332 [4,3,2,2,1]=>53678625 [4,3,2,1,1,1]=>36644608 [4,3,1,1,1,1,1]=>7378371 [4,2,2,2,2]=>9555975 [4,2,2,2,1,1]=>15415400 [4,2,2,1,1,1,1]=>7135128 [4,2,1,1,1,1,1,1]=>1289925 [4,1,1,1,1,1,1,1,1]=>75075 [3,3,3,3]=>4723719 [3,3,3,2,1]=>15704832 [3,3,3,1,1,1]=>8588580 [3,3,2,2,2]=>7361640 [3,3,2,2,1,1]=>11594583 [3,3,2,1,1,1,1]=>5010005 [3,3,1,1,1,1,1,1]=>728728 [3,2,2,2,2,1]=>3468465 [3,2,2,2,1,1,1]=>2818816 [3,2,2,1,1,1,1,1]=>891891 [3,2,1,1,1,1,1,1,1]=>116480 [3,1,1,1,1,1,1,1,1,1]=>5005 [2,2,2,2,2,2]=>226512 [2,2,2,2,2,1,1]=>382239 [2,2,2,2,1,1,1,1]=>196625 [2,2,2,1,1,1,1,1,1]=>44044 [2,2,1,1,1,1,1,1,1,1]=>4212 [2,1,1,1,1,1,1,1,1,1,1]=>143 [1,1,1,1,1,1,1,1,1,1,1,1]=>1 [13]=>5200300 [12,1]=>29953728 [10,3]=>171184832 [9,2,2]=>330142176 [8,5]=>244549760 [8,4,1]=>756575820 [8,3,2]=>807014208 [8,3,1,1]=>825355440 [7,6]=>155900472 [7,5,1]=>672511840 [7,4,2]=>1059206148 [7,3,3]=>546415870 [6,6,1]=>270774504 [6,5,2]=>764539776 [6,5,1,1]=>707907200 [6,4,3]=>776485710 [6,4,2,1]=>1592791200 [6,3,2,2]=>817632816 [6,3,1,1,1,1]=>347518080 [6,2,2,1,1,1]=>297872640 [6,1,1,1,1,1,1,1]=>6785856 [5,5,3]=>368111744 [5,4,4]=>241573332 [5,4,3,1]=>1006555550 [5,4,2,2]=>730029300 [5,4,2,1,1]=>995494500 [5,4,1,1,1,1]=>278738460 [5,3,3,2]=>569422854 [5,3,3,1,1]=>644195552 [5,3,2,2,1]=>730029300 [5,3,2,1,1,1]=>509693184 [5,3,1,1,1,1,1]=>106427412 [5,2,2,2,1,1]=>200236608 [5,2,2,1,1,1,1]=>96532800 [5,2,1,1,1,1,1,1]=>18582564 [4,4,4,1]=>189469280 [4,4,3,2]=>372171800 [4,4,3,1,1]=>411080670 [4,4,2,2,1]=>386486100 [4,3,3,3]=>119094976 [4,3,3,2,1]=>390780390 [3,3,3,3,1]=>50243193 [3,3,3,2,2]=>55825770 [3,3,2,2,2,1]=>51531480 [3,3,2,1,1,1,1,1]=>13117104 [3,2,2,2,2,2]=>8281845 [3,2,2,2,2,1,1]=>14314300 [3,1,1,1,1,1,1,1,1,1,1]=>6930 [2,2,2,2,2,2,1]=>1288287 [2,2,2,2,1,1,1,1,1]=>429429 [1,1,1,1,1,1,1,1,1,1,1,1,1]=>1 [14]=>20058300 [13,1]=>125550100 [12,2]=>400423100 [12,1,1]=>347677200 [9,5]=>1539017480 [8,6]=>1259196120 [7,7]=>488259720 [6,2,2,2,2]=>1294585292 [6,1,1,1,1,1,1,1,1]=>14965236 [5,5,4]=>1723110480 [5,5,1,1,1,1]=>1458016560 [5,4,1,1,1,1,1]=>998000640 [5,3,3,3]=>1811799990 [5,3,2,1,1,1,1]=>1900489500 [5,3,1,1,1,1,1,1]=>300179880 [5,2,2,2,2,1]=>919836918 [5,2,2,1,1,1,1,1]=>278738460 [4,4,4,2]=>1486605120 [4,4,4,1,1]=>1548547000 [4,4,3,3]=>1288391104 [4,3,2,2,2,1]=>1334910720 [3,3,3,3,2]=>260520260 [3,3,3,3,1,1]=>319729410 [3,3,3,2,2,1]=>450900450 [3,3,2,2,2,2]=>138030750 [3,3,1,1,1,1,1,1,1,1]=>2866500 [3,2,2,2,2,1,1,1]=>48096048 [2,2,2,2,2,2,2]=>2760615 [1,1,1,1,1,1,1,1,1,1,1,1,1,1]=>1 [15]=>77558760 [14,1]=>524190240 [5,3,1,1,1,1,1,1,1]=>773587584 [3,3,3,3,3]=>644195552 [3,3,3,2,2,2]=>1390532000 [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]=>1 [16]=>300540195 [2,2,2,2,2,2,2,2]=>34763300 [2,2,2,2,2,2,1,1,1,1]=>45048640 [2,2,2,2,1,1,1,1,1,1,1,1]=>2998800 [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]=>1 [17]=>1166803110 [3,2,2,2,2,2,2,2]=>1796567344 [3,1,1,1,1,1,1,1,1,1,1,1,1,1,1]=>20520 [2,2,2,2,2,2,2,2,2]=>449141836
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The number of semistandard tableaux on a given integer partition of n with maximal entry n.
This is, for an integer partition $\lambda = ( \lambda_1 \geq \cdots \geq \lambda_k \geq 0) \vdash n$, the number of semistandard tableaux of shape $\lambda$ with maximal entry $n$.
Equivalently, this is the evaluation $s_\lambda(1,\ldots,1)$ of the Schur function $s_\lambda$ in $n$ variables, or, explicitly,
$$\prod_{(i,j) \in \lambda} \frac{n+j-i}{\operatorname{hook}(i,j)}$$
where the product is over all cells $(i,j) \in \lambda$ and $\operatorname{hook}(i,j)$ is the hook length of a cell.
See [Theorem 6.3, 1] for details.
References
[1] Fulton, W., Harris, J. Representation theory MathSciNet:1153249
Code
def statistic(L):
    if L:
        return SemistandardTableaux(shape=L, max_entry=sum(L)).cardinality()
    return 1

def statistic_alternative_1(L):
    return prod(QQ(sum(L)+j-i)/L.hook_length(i,j) for i,j in L.cells())

def statistic_alternative_2(L):
    return SymmetricFunctions(QQ).schur()(L).expand(sum(L))([1]*sum(L))

Created
Mar 07, 2017 at 09:21 by Christian Stump
Updated
Dec 29, 2023 at 14:37 by Martin Rubey