Identifier
- St000715: Integer partitions ⟶ ℤ
Values
=>
Cc0002;cc-rep
[]=>1
[1]=>3
[2]=>6
[1,1]=>3
[3]=>10
[2,1]=>8
[1,1,1]=>1
[4]=>15
[3,1]=>15
[2,2]=>6
[2,1,1]=>3
[1,1,1,1]=>0
[5]=>21
[4,1]=>24
[3,2]=>15
[3,1,1]=>6
[2,2,1]=>3
[2,1,1,1]=>0
[1,1,1,1,1]=>0
[6]=>28
[5,1]=>35
[4,2]=>27
[4,1,1]=>10
[3,3]=>10
[3,2,1]=>8
[3,1,1,1]=>0
[2,2,2]=>1
[2,2,1,1]=>0
[2,1,1,1,1]=>0
[1,1,1,1,1,1]=>0
[7]=>36
[6,1]=>48
[5,2]=>42
[5,1,1]=>15
[4,3]=>24
[4,2,1]=>15
[4,1,1,1]=>0
[3,3,1]=>6
[3,2,2]=>3
[3,2,1,1]=>0
[3,1,1,1,1]=>0
[2,2,2,1]=>0
[2,2,1,1,1]=>0
[2,1,1,1,1,1]=>0
[1,1,1,1,1,1,1]=>0
[8]=>45
[7,1]=>63
[6,2]=>60
[6,1,1]=>21
[5,3]=>42
[5,2,1]=>24
[5,1,1,1]=>0
[4,4]=>15
[4,3,1]=>15
[4,2,2]=>6
[4,2,1,1]=>0
[4,1,1,1,1]=>0
[3,3,2]=>3
[3,3,1,1]=>0
[3,2,2,1]=>0
[3,2,1,1,1]=>0
[3,1,1,1,1,1]=>0
[2,2,2,2]=>0
[2,2,2,1,1]=>0
[2,2,1,1,1,1]=>0
[2,1,1,1,1,1,1]=>0
[1,1,1,1,1,1,1,1]=>0
[9]=>55
[8,1]=>80
[7,2]=>81
[7,1,1]=>28
[6,3]=>64
[6,2,1]=>35
[6,1,1,1]=>0
[5,4]=>35
[5,3,1]=>27
[5,2,2]=>10
[5,2,1,1]=>0
[5,1,1,1,1]=>0
[4,4,1]=>10
[4,3,2]=>8
[4,3,1,1]=>0
[4,2,2,1]=>0
[4,2,1,1,1]=>0
[4,1,1,1,1,1]=>0
[3,3,3]=>1
[3,3,2,1]=>0
[3,3,1,1,1]=>0
[3,2,2,2]=>0
[3,2,2,1,1]=>0
[3,2,1,1,1,1]=>0
[3,1,1,1,1,1,1]=>0
[2,2,2,2,1]=>0
[2,2,2,1,1,1]=>0
[2,2,1,1,1,1,1]=>0
[2,1,1,1,1,1,1,1]=>0
[1,1,1,1,1,1,1,1,1]=>0
[10]=>66
[9,1]=>99
[8,2]=>105
[8,1,1]=>36
[7,3]=>90
[7,2,1]=>48
[7,1,1,1]=>0
[6,4]=>60
[6,3,1]=>42
[6,2,2]=>15
[6,2,1,1]=>0
[6,1,1,1,1]=>0
[5,5]=>21
[5,4,1]=>24
[5,3,2]=>15
[5,3,1,1]=>0
[5,2,2,1]=>0
[5,2,1,1,1]=>0
[5,1,1,1,1,1]=>0
[4,4,2]=>6
[4,4,1,1]=>0
[4,3,3]=>3
[4,3,2,1]=>0
[4,3,1,1,1]=>0
[4,2,2,2]=>0
[4,2,2,1,1]=>0
[4,2,1,1,1,1]=>0
[4,1,1,1,1,1,1]=>0
[3,3,3,1]=>0
[3,3,2,2]=>0
[3,3,2,1,1]=>0
[3,3,1,1,1,1]=>0
[3,2,2,2,1]=>0
[3,2,2,1,1,1]=>0
[3,2,1,1,1,1,1]=>0
[3,1,1,1,1,1,1,1]=>0
[2,2,2,2,2]=>0
[2,2,2,2,1,1]=>0
[2,2,2,1,1,1,1]=>0
[2,2,1,1,1,1,1,1]=>0
[2,1,1,1,1,1,1,1,1]=>0
[1,1,1,1,1,1,1,1,1,1]=>0
[11]=>78
[10,1]=>120
[9,2]=>132
[9,1,1]=>45
[8,3]=>120
[8,2,1]=>63
[8,1,1,1]=>0
[7,4]=>90
[7,3,1]=>60
[7,2,2]=>21
[7,2,1,1]=>0
[7,1,1,1,1]=>0
[6,5]=>48
[6,4,1]=>42
[6,3,2]=>24
[6,3,1,1]=>0
[6,2,2,1]=>0
[6,2,1,1,1]=>0
[6,1,1,1,1,1]=>0
[5,5,1]=>15
[5,4,2]=>15
[5,4,1,1]=>0
[5,3,3]=>6
[5,3,2,1]=>0
[5,3,1,1,1]=>0
[5,2,2,2]=>0
[5,2,2,1,1]=>0
[5,2,1,1,1,1]=>0
[5,1,1,1,1,1,1]=>0
[4,4,3]=>3
[4,4,2,1]=>0
[4,4,1,1,1]=>0
[4,3,3,1]=>0
[4,3,2,2]=>0
[4,3,2,1,1]=>0
[4,3,1,1,1,1]=>0
[4,2,2,2,1]=>0
[4,2,2,1,1,1]=>0
[4,2,1,1,1,1,1]=>0
[4,1,1,1,1,1,1,1]=>0
[3,3,3,2]=>0
[3,3,3,1,1]=>0
[3,3,2,2,1]=>0
[3,3,2,1,1,1]=>0
[3,3,1,1,1,1,1]=>0
[3,2,2,2,2]=>0
[3,2,2,2,1,1]=>0
[3,2,2,1,1,1,1]=>0
[3,2,1,1,1,1,1,1]=>0
[3,1,1,1,1,1,1,1,1]=>0
[2,2,2,2,2,1]=>0
[2,2,2,2,1,1,1]=>0
[2,2,2,1,1,1,1,1]=>0
[2,2,1,1,1,1,1,1,1]=>0
[2,1,1,1,1,1,1,1,1,1]=>0
[1,1,1,1,1,1,1,1,1,1,1]=>0
[12]=>91
[11,1]=>143
[10,2]=>162
[10,1,1]=>55
[9,3]=>154
[9,2,1]=>80
[9,1,1,1]=>0
[8,4]=>125
[8,3,1]=>81
[8,2,2]=>28
[8,2,1,1]=>0
[8,1,1,1,1]=>0
[7,5]=>81
[7,4,1]=>64
[7,3,2]=>35
[7,3,1,1]=>0
[7,2,2,1]=>0
[7,2,1,1,1]=>0
[7,1,1,1,1,1]=>0
[6,6]=>28
[6,5,1]=>35
[6,4,2]=>27
[6,4,1,1]=>0
[6,3,3]=>10
[6,3,2,1]=>0
[6,3,1,1,1]=>0
[6,2,2,2]=>0
[6,2,2,1,1]=>0
[6,2,1,1,1,1]=>0
[6,1,1,1,1,1,1]=>0
[5,5,2]=>10
[5,5,1,1]=>0
[5,4,3]=>8
[5,4,2,1]=>0
[5,4,1,1,1]=>0
[5,3,3,1]=>0
[5,3,2,2]=>0
[5,3,2,1,1]=>0
[5,3,1,1,1,1]=>0
[5,2,2,2,1]=>0
[5,2,2,1,1,1]=>0
[5,2,1,1,1,1,1]=>0
[5,1,1,1,1,1,1,1]=>0
[4,4,4]=>1
[4,4,3,1]=>0
[4,4,2,2]=>0
[4,4,2,1,1]=>0
[4,4,1,1,1,1]=>0
[4,3,3,2]=>0
[4,3,3,1,1]=>0
[4,3,2,2,1]=>0
[4,3,2,1,1,1]=>0
[4,3,1,1,1,1,1]=>0
[4,2,2,2,2]=>0
[4,2,2,2,1,1]=>0
[4,2,2,1,1,1,1]=>0
[4,2,1,1,1,1,1,1]=>0
[4,1,1,1,1,1,1,1,1]=>0
[3,3,3,3]=>0
[3,3,3,2,1]=>0
[3,3,3,1,1,1]=>0
[3,3,2,2,2]=>0
[3,3,2,2,1,1]=>0
[3,3,2,1,1,1,1]=>0
[3,3,1,1,1,1,1,1]=>0
[3,2,2,2,2,1]=>0
[3,2,2,2,1,1,1]=>0
[3,2,2,1,1,1,1,1]=>0
[3,2,1,1,1,1,1,1,1]=>0
[3,1,1,1,1,1,1,1,1,1]=>0
[2,2,2,2,2,2]=>0
[2,2,2,2,2,1,1]=>0
[2,2,2,2,1,1,1,1]=>0
[2,2,2,1,1,1,1,1,1]=>0
[2,2,1,1,1,1,1,1,1,1]=>0
[2,1,1,1,1,1,1,1,1,1,1]=>0
[1,1,1,1,1,1,1,1,1,1,1,1]=>0
[5,4,3,1]=>0
[5,4,2,2]=>0
[5,4,2,1,1]=>0
[5,3,3,2]=>0
[5,3,3,1,1]=>0
[5,3,2,2,1]=>0
[4,4,3,2]=>0
[4,4,3,1,1]=>0
[4,4,2,2,1]=>0
[4,3,3,2,1]=>0
[5,4,3,2]=>0
[5,4,3,1,1]=>0
[5,4,2,2,1]=>0
[5,3,3,2,1]=>0
[4,4,3,2,1]=>0
[5,4,3,2,1]=>0
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of semistandard Young tableaux of given shape and entries at most 3.
This is also the dimension of the corresponding irreducible representation of $GL_3$.
This is also the dimension of the corresponding irreducible representation of $GL_3$.
Code
def statistic(mu): return SemistandardTableaux(shape=mu, max_entry=3).cardinality()
Created
Mar 21, 2017 at 07:34 by Martin Rubey
Updated
Apr 26, 2018 at 07:24 by Martin Rubey
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!