Identifier
- St000752: Integer partitions ⟶ ℤ
Values
=>
Cc0002;cc-rep
[]=>0
[1]=>0
[2]=>0
[1,1]=>0
[3]=>1
[2,1]=>0
[1,1,1]=>0
[4]=>2
[3,1]=>1
[2,2]=>0
[2,1,1]=>0
[1,1,1,1]=>0
[5]=>0
[4,1]=>2
[3,2]=>1
[3,1,1]=>1
[2,2,1]=>0
[2,1,1,1]=>0
[1,1,1,1,1]=>0
[6]=>1
[5,1]=>0
[4,2]=>2
[4,1,1]=>2
[3,3]=>0
[3,2,1]=>1
[3,1,1,1]=>1
[2,2,2]=>0
[2,2,1,1]=>0
[2,1,1,1,1]=>0
[1,1,1,1,1,1]=>0
[7]=>2
[6,1]=>1
[5,2]=>0
[5,1,1]=>0
[4,3]=>3
[4,2,1]=>2
[4,1,1,1]=>2
[3,3,1]=>0
[3,2,2]=>1
[3,2,1,1]=>1
[3,1,1,1,1]=>1
[2,2,2,1]=>0
[2,2,1,1,1]=>0
[2,1,1,1,1,1]=>0
[1,1,1,1,1,1,1]=>0
[8]=>3
[7,1]=>2
[6,2]=>1
[6,1,1]=>1
[5,3]=>1
[5,2,1]=>0
[5,1,1,1]=>0
[4,4]=>0
[4,3,1]=>3
[4,2,2]=>2
[4,2,1,1]=>2
[4,1,1,1,1]=>2
[3,3,2]=>0
[3,3,1,1]=>0
[3,2,2,1]=>1
[3,2,1,1,1]=>1
[3,1,1,1,1,1]=>1
[2,2,2,2]=>0
[2,2,2,1,1]=>0
[2,2,1,1,1,1]=>0
[2,1,1,1,1,1,1]=>0
[1,1,1,1,1,1,1,1]=>0
[9]=>1
[8,1]=>3
[7,2]=>2
[7,1,1]=>2
[6,3]=>0
[6,2,1]=>1
[6,1,1,1]=>1
[5,4]=>2
[5,3,1]=>1
[5,2,2]=>0
[5,2,1,1]=>0
[5,1,1,1,1]=>0
[4,4,1]=>0
[4,3,2]=>3
[4,3,1,1]=>3
[4,2,2,1]=>2
[4,2,1,1,1]=>2
[4,1,1,1,1,1]=>2
[3,3,3]=>1
[3,3,2,1]=>0
[3,3,1,1,1]=>0
[3,2,2,2]=>1
[3,2,2,1,1]=>1
[3,2,1,1,1,1]=>1
[3,1,1,1,1,1,1]=>1
[2,2,2,2,1]=>0
[2,2,2,1,1,1]=>0
[2,2,1,1,1,1,1]=>0
[2,1,1,1,1,1,1,1]=>0
[1,1,1,1,1,1,1,1,1]=>0
[10]=>2
[9,1]=>1
[8,2]=>3
[8,1,1]=>3
[7,3]=>3
[7,2,1]=>2
[7,1,1,1]=>2
[6,4]=>3
[6,3,1]=>0
[6,2,2]=>1
[6,2,1,1]=>1
[6,1,1,1,1]=>1
[5,5]=>0
[5,4,1]=>2
[5,3,2]=>1
[5,3,1,1]=>1
[5,2,2,1]=>0
[5,2,1,1,1]=>0
[5,1,1,1,1,1]=>0
[4,4,2]=>0
[4,4,1,1]=>0
[4,3,3]=>2
[4,3,2,1]=>3
[4,3,1,1,1]=>3
[4,2,2,2]=>2
[4,2,2,1,1]=>2
[4,2,1,1,1,1]=>2
[4,1,1,1,1,1,1]=>2
[3,3,3,1]=>1
[3,3,2,2]=>0
[3,3,2,1,1]=>0
[3,3,1,1,1,1]=>0
[3,2,2,2,1]=>1
[3,2,2,1,1,1]=>1
[3,2,1,1,1,1,1]=>1
[3,1,1,1,1,1,1,1]=>1
[2,2,2,2,2]=>0
[2,2,2,2,1,1]=>0
[2,2,2,1,1,1,1]=>0
[2,2,1,1,1,1,1,1]=>0
[2,1,1,1,1,1,1,1,1]=>0
[1,1,1,1,1,1,1,1,1,1]=>0
[11]=>3
[10,1]=>2
[9,2]=>1
[9,1,1]=>1
[8,3]=>2
[8,2,1]=>3
[8,1,1,1]=>3
[7,4]=>0
[7,3,1]=>3
[7,2,2]=>2
[7,2,1,1]=>2
[7,1,1,1,1]=>2
[6,5]=>1
[6,4,1]=>3
[6,3,2]=>0
[6,3,1,1]=>0
[6,2,2,1]=>1
[6,2,1,1,1]=>1
[6,1,1,1,1,1]=>1
[5,5,1]=>0
[5,4,2]=>2
[5,4,1,1]=>2
[5,3,3]=>0
[5,3,2,1]=>1
[5,3,1,1,1]=>1
[5,2,2,2]=>0
[5,2,2,1,1]=>0
[5,2,1,1,1,1]=>0
[5,1,1,1,1,1,1]=>0
[4,4,3]=>1
[4,4,2,1]=>0
[4,4,1,1,1]=>0
[4,3,3,1]=>2
[4,3,2,2]=>3
[4,3,2,1,1]=>3
[4,3,1,1,1,1]=>3
[4,2,2,2,1]=>2
[4,2,2,1,1,1]=>2
[4,2,1,1,1,1,1]=>2
[4,1,1,1,1,1,1,1]=>2
[3,3,3,2]=>1
[3,3,3,1,1]=>1
[3,3,2,2,1]=>0
[3,3,2,1,1,1]=>0
[3,3,1,1,1,1,1]=>0
[3,2,2,2,2]=>1
[3,2,2,2,1,1]=>1
[3,2,2,1,1,1,1]=>1
[3,2,1,1,1,1,1,1]=>1
[3,1,1,1,1,1,1,1,1]=>1
[2,2,2,2,2,1]=>0
[2,2,2,2,1,1,1]=>0
[2,2,2,1,1,1,1,1]=>0
[2,2,1,1,1,1,1,1,1]=>0
[2,1,1,1,1,1,1,1,1,1]=>0
[1,1,1,1,1,1,1,1,1,1,1]=>0
[12]=>4
[11,1]=>3
[10,2]=>2
[10,1,1]=>2
[9,3]=>0
[9,2,1]=>1
[9,1,1,1]=>1
[8,4]=>1
[8,3,1]=>2
[8,2,2]=>3
[8,2,1,1]=>3
[8,1,1,1,1]=>3
[7,5]=>2
[7,4,1]=>0
[7,3,2]=>3
[7,3,1,1]=>3
[7,2,2,1]=>2
[7,2,1,1,1]=>2
[7,1,1,1,1,1]=>2
[6,6]=>0
[6,5,1]=>1
[6,4,2]=>3
[6,4,1,1]=>3
[6,3,3]=>1
[6,3,2,1]=>0
[6,3,1,1,1]=>0
[6,2,2,2]=>1
[6,2,2,1,1]=>1
[6,2,1,1,1,1]=>1
[6,1,1,1,1,1,1]=>1
[5,5,2]=>0
[5,5,1,1]=>0
[5,4,3]=>3
[5,4,2,1]=>2
[5,4,1,1,1]=>2
[5,3,3,1]=>0
[5,3,2,2]=>1
[5,3,2,1,1]=>1
[5,3,1,1,1,1]=>1
[5,2,2,2,1]=>0
[5,2,2,1,1,1]=>0
[5,2,1,1,1,1,1]=>0
[5,1,1,1,1,1,1,1]=>0
[4,4,4]=>2
[4,4,3,1]=>1
[4,4,2,2]=>0
[4,4,2,1,1]=>0
[4,4,1,1,1,1]=>0
[4,3,3,2]=>2
[4,3,3,1,1]=>2
[4,3,2,2,1]=>3
[4,3,2,1,1,1]=>3
[4,3,1,1,1,1,1]=>3
[4,2,2,2,2]=>2
[4,2,2,2,1,1]=>2
[4,2,2,1,1,1,1]=>2
[4,2,1,1,1,1,1,1]=>2
[4,1,1,1,1,1,1,1,1]=>2
[3,3,3,3]=>0
[3,3,3,2,1]=>1
[3,3,3,1,1,1]=>1
[3,3,2,2,2]=>0
[3,3,2,2,1,1]=>0
[3,3,2,1,1,1,1]=>0
[3,3,1,1,1,1,1,1]=>0
[3,2,2,2,2,1]=>1
[3,2,2,2,1,1,1]=>1
[3,2,2,1,1,1,1,1]=>1
[3,2,1,1,1,1,1,1,1]=>1
[3,1,1,1,1,1,1,1,1,1]=>1
[2,2,2,2,2,2]=>0
[2,2,2,2,2,1,1]=>0
[2,2,2,2,1,1,1,1]=>0
[2,2,2,1,1,1,1,1,1]=>0
[2,2,1,1,1,1,1,1,1,1]=>0
[2,1,1,1,1,1,1,1,1,1,1]=>0
[1,1,1,1,1,1,1,1,1,1,1,1]=>0
[5,4,3,1]=>3
[5,4,2,2]=>2
[5,4,2,1,1]=>2
[5,3,3,2]=>0
[5,3,3,1,1]=>0
[5,3,2,2,1]=>1
[4,4,3,2]=>1
[4,4,3,1,1]=>1
[4,4,2,2,1]=>0
[4,3,3,2,1]=>2
[5,4,3,2]=>3
[5,4,3,1,1]=>3
[5,4,2,2,1]=>2
[5,3,3,2,1]=>0
[4,4,3,2,1]=>1
[5,4,3,2,1]=>3
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The Grundy value for the game 'Couples are forever' on an integer partition.
Two players alternately choose a part of the partition greater than two, and split it into two parts. The player facing a partition with all parts at most two looses.
Two players alternately choose a part of the partition greater than two, and split it into two parts. The player facing a partition with all parts at most two looses.
References
[1] Caines, I., Gates, C., Guy, R. K., Nowakowski, R. J. Unsolved Problems: Periods in Taking and Splitting Games MathSciNet:1543453
Code
@cached_function def statistic(la): """Return the Grundy value of the partition for the game 'couples are forever'. """ def children(la): for i in range(len(la)): p = la[i] if p > 2: mu = la[:i] + la[i+1:] for k in range(1, (p+2)//2): yield Partition(sorted(mu + [p-k, k], reverse=True)) l = [statistic(mu) for mu in children(la)] i = 0 while i in l: i += 1 return i
Created
Apr 06, 2017 at 23:39 by Martin Rubey
Updated
Dec 31, 2017 at 14:08 by Martin Rubey
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!