edit this statistic or download as text // json
Identifier
Values
=>
Cc0002;cc-rep
[1]=>1 [2]=>1 [1,1]=>1 [3]=>1 [2,1]=>1 [1,1,1]=>1 [4]=>1 [3,1]=>1 [2,2]=>1 [2,1,1]=>1 [1,1,1,1]=>1 [5]=>1 [4,1]=>1 [3,2]=>1 [3,1,1]=>1 [2,2,1]=>1 [2,1,1,1]=>1 [1,1,1,1,1]=>1 [6]=>1 [5,1]=>1 [4,2]=>1 [4,1,1]=>1 [3,3]=>1 [3,2,1]=>2 [3,1,1,1]=>1 [2,2,2]=>1 [2,2,1,1]=>1 [2,1,1,1,1]=>1 [1,1,1,1,1,1]=>1 [7]=>1 [6,1]=>1 [5,2]=>1 [5,1,1]=>1 [4,3]=>1 [4,2,1]=>2 [4,1,1,1]=>1 [3,3,1]=>1 [3,2,2]=>1 [3,2,1,1]=>2 [3,1,1,1,1]=>1 [2,2,2,1]=>1 [2,2,1,1,1]=>1 [2,1,1,1,1,1]=>1 [1,1,1,1,1,1,1]=>1 [8]=>1 [7,1]=>1 [6,2]=>1 [6,1,1]=>1 [5,3]=>1 [5,2,1]=>2 [5,1,1,1]=>1 [4,4]=>1 [4,3,1]=>2 [4,2,2]=>3 [4,2,1,1]=>2 [4,1,1,1,1]=>1 [3,3,2]=>1 [3,3,1,1]=>3 [3,2,2,1]=>2 [3,2,1,1,1]=>2 [3,1,1,1,1,1]=>1 [2,2,2,2]=>1 [2,2,2,1,1]=>1 [2,2,1,1,1,1]=>1 [2,1,1,1,1,1,1]=>1 [1,1,1,1,1,1,1,1]=>1 [9]=>1 [8,1]=>1 [7,2]=>1 [7,1,1]=>1 [6,3]=>1 [6,2,1]=>2 [6,1,1,1]=>1 [5,4]=>1 [5,3,1]=>2 [5,2,2]=>3 [5,2,1,1]=>2 [5,1,1,1,1]=>1 [4,4,1]=>1 [4,3,2]=>2 [4,3,1,1]=>2 [4,2,2,1]=>2 [4,2,1,1,1]=>2 [4,1,1,1,1,1]=>1 [3,3,3]=>1 [3,3,2,1]=>2 [3,3,1,1,1]=>3 [3,2,2,2]=>1 [3,2,2,1,1]=>2 [3,2,1,1,1,1]=>2 [3,1,1,1,1,1,1]=>1 [2,2,2,2,1]=>1 [2,2,2,1,1,1]=>1 [2,2,1,1,1,1,1]=>1 [2,1,1,1,1,1,1,1]=>1 [1,1,1,1,1,1,1,1,1]=>1 [10]=>1 [9,1]=>1 [8,2]=>1 [8,1,1]=>1 [7,3]=>1 [7,2,1]=>2 [7,1,1,1]=>1 [6,4]=>1 [6,3,1]=>2 [6,2,2]=>3 [6,2,1,1]=>2 [6,1,1,1,1]=>1 [5,5]=>1 [5,4,1]=>2 [5,3,2]=>3 [5,3,1,1]=>3 [5,2,2,1]=>3 [5,2,1,1,1]=>2 [5,1,1,1,1,1]=>1 [4,4,2]=>1 [4,4,1,1]=>1 [4,3,3]=>2 [4,3,2,1]=>4 [4,3,1,1,1]=>3 [4,2,2,2]=>1 [4,2,2,1,1]=>3 [4,2,1,1,1,1]=>2 [4,1,1,1,1,1,1]=>1 [3,3,3,1]=>2 [3,3,2,2]=>1 [3,3,2,1,1]=>3 [3,3,1,1,1,1]=>3 [3,2,2,2,1]=>2 [3,2,2,1,1,1]=>2 [3,2,1,1,1,1,1]=>2 [3,1,1,1,1,1,1,1]=>1 [2,2,2,2,2]=>1 [2,2,2,2,1,1]=>1 [2,2,2,1,1,1,1]=>1 [2,2,1,1,1,1,1,1]=>1 [2,1,1,1,1,1,1,1,1]=>1 [1,1,1,1,1,1,1,1,1,1]=>1 [5,4,2]=>2 [5,4,1,1]=>2 [5,3,3]=>3 [5,3,2,1]=>5 [5,3,1,1,1]=>2 [5,2,2,2]=>3 [5,2,2,1,1]=>2 [4,4,3]=>1 [4,4,2,1]=>2 [4,4,1,1,1]=>3 [4,3,3,1]=>3 [4,3,2,2]=>2 [4,3,2,1,1]=>5 [4,2,2,2,1]=>2 [3,3,3,2]=>1 [3,3,3,1,1]=>3 [3,3,2,2,1]=>2 [6,4,2]=>3 [5,4,3]=>2 [5,4,2,1]=>4 [5,4,1,1,1]=>2 [5,3,3,1]=>5 [5,3,2,2]=>5 [5,3,2,1,1]=>4 [5,2,2,2,1]=>2 [4,4,3,1]=>2 [4,4,2,2]=>3 [4,4,2,1,1]=>5 [4,3,3,2]=>2 [4,3,3,1,1]=>5 [4,3,2,2,1]=>4 [3,3,3,2,1]=>2 [3,3,2,2,1,1]=>3 [5,4,3,1]=>4 [5,4,2,2]=>5 [5,4,2,1,1]=>4 [5,3,3,2]=>6 [5,3,3,1,1]=>5 [5,3,2,2,1]=>4 [4,4,3,2]=>2 [4,4,3,1,1]=>6 [4,4,2,2,1]=>5 [4,3,3,2,1]=>4 [5,4,3,2]=>5 [5,4,3,1,1]=>5 [5,4,2,2,1]=>5 [5,3,3,2,1]=>5 [4,4,3,2,1]=>5 [5,4,3,2,1]=>9
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The number of proper colouring schemes of a Ferrers diagram.
A colouring of a Ferrers diagram is proper if no two cells in a row or in a column have the same colour. The minimal number of colours needed is the maximum of the length and the first part of the partition, because we can restrict a latin square to the shape. We can associate to each colouring the integer partition recording how often each colour is used, see [1].
This statistic is the number of distinct such integer partitions that occur.
References
[1] Chow, T. Coloring a Ferrers diagram MathOverflow:203962
Code
def Ferrers_graph(mu):
    """Return the graph with vertices being the cells of the Ferrers
    diagram, two vertices are connected if the cells are in the same
    row or column.  
    """
    V = mu.cells()
    G = Graph([V, lambda a,b: a[0] == b[0] or a[1] == b[1]], loops=False, multiedges=False)
    return G

def all_colouring_partitions(mu):
    from sage.graphs.graph_coloring import all_graph_colorings
    mu = Partition(mu)
    res = dict()
    for c in all_graph_colorings(Ferrers_graph(mu), max(mu[0], len(mu))):
        la = Partition(sorted((len(v) for v in c.values()), reverse=True))
        res[la] = res.get(la, 0) + 1
    return res

def statistic(mu):
    return len(all_colouring_partitions(mu))

Created
Apr 18, 2017 at 13:23 by Martin Rubey
Updated
Apr 23, 2018 at 07:20 by Martin Rubey