Identifier
- St000781: Integer partitions ⟶ ℤ
Values
=>
Cc0002;cc-rep
[1]=>1
[2]=>1
[1,1]=>1
[3]=>1
[2,1]=>1
[1,1,1]=>1
[4]=>1
[3,1]=>1
[2,2]=>1
[2,1,1]=>1
[1,1,1,1]=>1
[5]=>1
[4,1]=>1
[3,2]=>1
[3,1,1]=>1
[2,2,1]=>1
[2,1,1,1]=>1
[1,1,1,1,1]=>1
[6]=>1
[5,1]=>1
[4,2]=>1
[4,1,1]=>1
[3,3]=>1
[3,2,1]=>2
[3,1,1,1]=>1
[2,2,2]=>1
[2,2,1,1]=>1
[2,1,1,1,1]=>1
[1,1,1,1,1,1]=>1
[7]=>1
[6,1]=>1
[5,2]=>1
[5,1,1]=>1
[4,3]=>1
[4,2,1]=>2
[4,1,1,1]=>1
[3,3,1]=>1
[3,2,2]=>1
[3,2,1,1]=>2
[3,1,1,1,1]=>1
[2,2,2,1]=>1
[2,2,1,1,1]=>1
[2,1,1,1,1,1]=>1
[1,1,1,1,1,1,1]=>1
[8]=>1
[7,1]=>1
[6,2]=>1
[6,1,1]=>1
[5,3]=>1
[5,2,1]=>2
[5,1,1,1]=>1
[4,4]=>1
[4,3,1]=>2
[4,2,2]=>3
[4,2,1,1]=>2
[4,1,1,1,1]=>1
[3,3,2]=>1
[3,3,1,1]=>3
[3,2,2,1]=>2
[3,2,1,1,1]=>2
[3,1,1,1,1,1]=>1
[2,2,2,2]=>1
[2,2,2,1,1]=>1
[2,2,1,1,1,1]=>1
[2,1,1,1,1,1,1]=>1
[1,1,1,1,1,1,1,1]=>1
[9]=>1
[8,1]=>1
[7,2]=>1
[7,1,1]=>1
[6,3]=>1
[6,2,1]=>2
[6,1,1,1]=>1
[5,4]=>1
[5,3,1]=>2
[5,2,2]=>3
[5,2,1,1]=>2
[5,1,1,1,1]=>1
[4,4,1]=>1
[4,3,2]=>2
[4,3,1,1]=>2
[4,2,2,1]=>2
[4,2,1,1,1]=>2
[4,1,1,1,1,1]=>1
[3,3,3]=>1
[3,3,2,1]=>2
[3,3,1,1,1]=>3
[3,2,2,2]=>1
[3,2,2,1,1]=>2
[3,2,1,1,1,1]=>2
[3,1,1,1,1,1,1]=>1
[2,2,2,2,1]=>1
[2,2,2,1,1,1]=>1
[2,2,1,1,1,1,1]=>1
[2,1,1,1,1,1,1,1]=>1
[1,1,1,1,1,1,1,1,1]=>1
[10]=>1
[9,1]=>1
[8,2]=>1
[8,1,1]=>1
[7,3]=>1
[7,2,1]=>2
[7,1,1,1]=>1
[6,4]=>1
[6,3,1]=>2
[6,2,2]=>3
[6,2,1,1]=>2
[6,1,1,1,1]=>1
[5,5]=>1
[5,4,1]=>2
[5,3,2]=>3
[5,3,1,1]=>3
[5,2,2,1]=>3
[5,2,1,1,1]=>2
[5,1,1,1,1,1]=>1
[4,4,2]=>1
[4,4,1,1]=>1
[4,3,3]=>2
[4,3,2,1]=>4
[4,3,1,1,1]=>3
[4,2,2,2]=>1
[4,2,2,1,1]=>3
[4,2,1,1,1,1]=>2
[4,1,1,1,1,1,1]=>1
[3,3,3,1]=>2
[3,3,2,2]=>1
[3,3,2,1,1]=>3
[3,3,1,1,1,1]=>3
[3,2,2,2,1]=>2
[3,2,2,1,1,1]=>2
[3,2,1,1,1,1,1]=>2
[3,1,1,1,1,1,1,1]=>1
[2,2,2,2,2]=>1
[2,2,2,2,1,1]=>1
[2,2,2,1,1,1,1]=>1
[2,2,1,1,1,1,1,1]=>1
[2,1,1,1,1,1,1,1,1]=>1
[1,1,1,1,1,1,1,1,1,1]=>1
[5,4,2]=>2
[5,4,1,1]=>2
[5,3,3]=>3
[5,3,2,1]=>5
[5,3,1,1,1]=>2
[5,2,2,2]=>3
[5,2,2,1,1]=>2
[4,4,3]=>1
[4,4,2,1]=>2
[4,4,1,1,1]=>3
[4,3,3,1]=>3
[4,3,2,2]=>2
[4,3,2,1,1]=>5
[4,2,2,2,1]=>2
[3,3,3,2]=>1
[3,3,3,1,1]=>3
[3,3,2,2,1]=>2
[6,4,2]=>3
[5,4,3]=>2
[5,4,2,1]=>4
[5,4,1,1,1]=>2
[5,3,3,1]=>5
[5,3,2,2]=>5
[5,3,2,1,1]=>4
[5,2,2,2,1]=>2
[4,4,3,1]=>2
[4,4,2,2]=>3
[4,4,2,1,1]=>5
[4,3,3,2]=>2
[4,3,3,1,1]=>5
[4,3,2,2,1]=>4
[3,3,3,2,1]=>2
[3,3,2,2,1,1]=>3
[5,4,3,1]=>4
[5,4,2,2]=>5
[5,4,2,1,1]=>4
[5,3,3,2]=>6
[5,3,3,1,1]=>5
[5,3,2,2,1]=>4
[4,4,3,2]=>2
[4,4,3,1,1]=>6
[4,4,2,2,1]=>5
[4,3,3,2,1]=>4
[5,4,3,2]=>5
[5,4,3,1,1]=>5
[5,4,2,2,1]=>5
[5,3,3,2,1]=>5
[4,4,3,2,1]=>5
[5,4,3,2,1]=>9
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of proper colouring schemes of a Ferrers diagram.
A colouring of a Ferrers diagram is proper if no two cells in a row or in a column have the same colour. The minimal number of colours needed is the maximum of the length and the first part of the partition, because we can restrict a latin square to the shape. We can associate to each colouring the integer partition recording how often each colour is used, see [1].
This statistic is the number of distinct such integer partitions that occur.
A colouring of a Ferrers diagram is proper if no two cells in a row or in a column have the same colour. The minimal number of colours needed is the maximum of the length and the first part of the partition, because we can restrict a latin square to the shape. We can associate to each colouring the integer partition recording how often each colour is used, see [1].
This statistic is the number of distinct such integer partitions that occur.
References
[1] Chow, T. Coloring a Ferrers diagram MathOverflow:203962
Code
def Ferrers_graph(mu): """Return the graph with vertices being the cells of the Ferrers diagram, two vertices are connected if the cells are in the same row or column. """ V = mu.cells() G = Graph([V, lambda a,b: a[0] == b[0] or a[1] == b[1]], loops=False, multiedges=False) return G def all_colouring_partitions(mu): from sage.graphs.graph_coloring import all_graph_colorings mu = Partition(mu) res = dict() for c in all_graph_colorings(Ferrers_graph(mu), max(mu[0], len(mu))): la = Partition(sorted((len(v) for v in c.values()), reverse=True)) res[la] = res.get(la, 0) + 1 return res def statistic(mu): return len(all_colouring_partitions(mu))
Created
Apr 18, 2017 at 13:23 by Martin Rubey
Updated
Apr 23, 2018 at 07:20 by Martin Rubey
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!