***************************************************************************** * www.FindStat.org - The Combinatorial Statistic Finder * * * * Copyright (C) 2019 The FindStatCrew * * * * This information is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. * ***************************************************************************** ----------------------------------------------------------------------------- Statistic identifier: St000787 ----------------------------------------------------------------------------- Collection: Perfect matchings ----------------------------------------------------------------------------- Description: The number of flips required to make a perfect matching noncrossing. A crossing in a perfect matching is a pair of arcs $\{a,b\}$ and $\{c,d\}$ such that $a < c < b < d$. Replacing any such pair by either $\{a,c\}$ and $\{b,d\}$ or by $\{a,d\}$, $\{b,c\}$ produces a perfect matching with fewer crossings. This statistic is the minimal number of such flips required to turn a given matching into a noncrossing matching. ----------------------------------------------------------------------------- References: [1] Bonnet, É., Miltzow, T. Flip Distance to a Non-crossing Perfect Matching [[arXiv:1601.05989]] ----------------------------------------------------------------------------- Code: @cached_function def statistic(w): def children(m): for (a,b),(c,d) in m.crossings(): m_new = list(m) m_new.remove((a,b)) m_new.remove((c,d)) A, B = min(a,b), max(a,b) C, D = min(c,d), max(c,d) if C < A: (A,B),(C,D) = (C,D),(A,B) yield PerfectMatching(m_new + [(A,C), (B,D)]) yield PerfectMatching(m_new + [(A,D), (B,C)]) w = PerfectMatching(sorted([sorted(a) for a in w])) l = [statistic(v) for v in children(w)] if len(l) == 0: return 0 else: return 1+min(l) ----------------------------------------------------------------------------- Statistic values: [(1,2)] => 0 [(1,2),(3,4)] => 0 [(1,3),(2,4)] => 1 [(1,4),(2,3)] => 0 [(1,2),(3,4),(5,6)] => 0 [(1,3),(2,4),(5,6)] => 1 [(1,4),(2,3),(5,6)] => 0 [(1,5),(2,3),(4,6)] => 1 [(1,6),(2,3),(4,5)] => 0 [(1,6),(2,4),(3,5)] => 1 [(1,5),(2,4),(3,6)] => 2 [(1,4),(2,5),(3,6)] => 1 [(1,3),(2,5),(4,6)] => 2 [(1,2),(3,5),(4,6)] => 1 [(1,2),(3,6),(4,5)] => 0 [(1,3),(2,6),(4,5)] => 1 [(1,4),(2,6),(3,5)] => 2 [(1,5),(2,6),(3,4)] => 1 [(1,6),(2,5),(3,4)] => 0 [(1,2),(3,4),(5,6),(7,8)] => 0 [(1,3),(2,4),(5,6),(7,8)] => 1 [(1,4),(2,3),(5,6),(7,8)] => 0 [(1,5),(2,3),(4,6),(7,8)] => 1 [(1,6),(2,3),(4,5),(7,8)] => 0 [(1,7),(2,3),(4,5),(6,8)] => 1 [(1,8),(2,3),(4,5),(6,7)] => 0 [(1,8),(2,4),(3,5),(6,7)] => 1 [(1,7),(2,4),(3,5),(6,8)] => 2 [(1,6),(2,4),(3,5),(7,8)] => 1 [(1,5),(2,4),(3,6),(7,8)] => 2 [(1,4),(2,5),(3,6),(7,8)] => 1 [(1,3),(2,5),(4,6),(7,8)] => 2 [(1,2),(3,5),(4,6),(7,8)] => 1 [(1,2),(3,6),(4,5),(7,8)] => 0 [(1,3),(2,6),(4,5),(7,8)] => 1 [(1,4),(2,6),(3,5),(7,8)] => 2 [(1,5),(2,6),(3,4),(7,8)] => 1 [(1,6),(2,5),(3,4),(7,8)] => 0 [(1,7),(2,5),(3,4),(6,8)] => 1 [(1,8),(2,5),(3,4),(6,7)] => 0 [(1,8),(2,6),(3,4),(5,7)] => 1 [(1,7),(2,6),(3,4),(5,8)] => 2 [(1,6),(2,7),(3,4),(5,8)] => 1 [(1,5),(2,7),(3,4),(6,8)] => 2 [(1,4),(2,7),(3,5),(6,8)] => 3 [(1,3),(2,7),(4,5),(6,8)] => 2 [(1,2),(3,7),(4,5),(6,8)] => 1 [(1,2),(3,8),(4,5),(6,7)] => 0 [(1,3),(2,8),(4,5),(6,7)] => 1 [(1,4),(2,8),(3,5),(6,7)] => 2 [(1,5),(2,8),(3,4),(6,7)] => 1 [(1,6),(2,8),(3,4),(5,7)] => 2 [(1,7),(2,8),(3,4),(5,6)] => 1 [(1,8),(2,7),(3,4),(5,6)] => 0 [(1,8),(2,7),(3,5),(4,6)] => 1 [(1,7),(2,8),(3,5),(4,6)] => 2 [(1,6),(2,8),(3,5),(4,7)] => 3 [(1,5),(2,8),(3,6),(4,7)] => 2 [(1,4),(2,8),(3,6),(5,7)] => 3 [(1,3),(2,8),(4,6),(5,7)] => 2 [(1,2),(3,8),(4,6),(5,7)] => 1 [(1,2),(3,7),(4,6),(5,8)] => 2 [(1,3),(2,7),(4,6),(5,8)] => 3 [(1,4),(2,7),(3,6),(5,8)] => 2 [(1,5),(2,7),(3,6),(4,8)] => 1 [(1,6),(2,7),(3,5),(4,8)] => 2 [(1,7),(2,6),(3,5),(4,8)] => 3 [(1,8),(2,6),(3,5),(4,7)] => 2 [(1,8),(2,5),(3,6),(4,7)] => 1 [(1,7),(2,5),(3,6),(4,8)] => 2 [(1,6),(2,5),(3,7),(4,8)] => 1 [(1,5),(2,6),(3,7),(4,8)] => 2 [(1,4),(2,6),(3,7),(5,8)] => 1 [(1,3),(2,6),(4,7),(5,8)] => 2 [(1,2),(3,6),(4,7),(5,8)] => 1 [(1,2),(3,5),(4,7),(6,8)] => 2 [(1,3),(2,5),(4,7),(6,8)] => 3 [(1,4),(2,5),(3,7),(6,8)] => 2 [(1,5),(2,4),(3,7),(6,8)] => 3 [(1,6),(2,4),(3,7),(5,8)] => 2 [(1,7),(2,4),(3,6),(5,8)] => 3 [(1,8),(2,4),(3,6),(5,7)] => 2 [(1,8),(2,3),(4,6),(5,7)] => 1 [(1,7),(2,3),(4,6),(5,8)] => 2 [(1,6),(2,3),(4,7),(5,8)] => 1 [(1,5),(2,3),(4,7),(6,8)] => 2 [(1,4),(2,3),(5,7),(6,8)] => 1 [(1,3),(2,4),(5,7),(6,8)] => 2 [(1,2),(3,4),(5,7),(6,8)] => 1 [(1,2),(3,4),(5,8),(6,7)] => 0 [(1,3),(2,4),(5,8),(6,7)] => 1 [(1,4),(2,3),(5,8),(6,7)] => 0 [(1,5),(2,3),(4,8),(6,7)] => 1 [(1,6),(2,3),(4,8),(5,7)] => 2 [(1,7),(2,3),(4,8),(5,6)] => 1 [(1,8),(2,3),(4,7),(5,6)] => 0 [(1,8),(2,4),(3,7),(5,6)] => 1 [(1,7),(2,4),(3,8),(5,6)] => 2 [(1,6),(2,4),(3,8),(5,7)] => 3 [(1,5),(2,4),(3,8),(6,7)] => 2 [(1,4),(2,5),(3,8),(6,7)] => 1 [(1,3),(2,5),(4,8),(6,7)] => 2 [(1,2),(3,5),(4,8),(6,7)] => 1 [(1,2),(3,6),(4,8),(5,7)] => 2 [(1,3),(2,6),(4,8),(5,7)] => 3 [(1,4),(2,6),(3,8),(5,7)] => 2 [(1,5),(2,6),(3,8),(4,7)] => 1 [(1,6),(2,5),(3,8),(4,7)] => 2 [(1,7),(2,5),(3,8),(4,6)] => 3 [(1,8),(2,5),(3,7),(4,6)] => 2 [(1,8),(2,6),(3,7),(4,5)] => 1 [(1,7),(2,6),(3,8),(4,5)] => 2 [(1,6),(2,7),(3,8),(4,5)] => 1 [(1,5),(2,7),(3,8),(4,6)] => 2 [(1,4),(2,7),(3,8),(5,6)] => 1 [(1,3),(2,7),(4,8),(5,6)] => 2 [(1,2),(3,7),(4,8),(5,6)] => 1 [(1,2),(3,8),(4,7),(5,6)] => 0 [(1,3),(2,8),(4,7),(5,6)] => 1 [(1,4),(2,8),(3,7),(5,6)] => 2 [(1,5),(2,8),(3,7),(4,6)] => 3 [(1,6),(2,8),(3,7),(4,5)] => 2 [(1,7),(2,8),(3,6),(4,5)] => 1 [(1,8),(2,7),(3,6),(4,5)] => 0 [(1,2),(3,4),(5,6),(7,8),(9,10)] => 0 [(1,3),(2,4),(5,6),(7,8),(9,10)] => 1 [(1,4),(2,3),(5,6),(7,8),(9,10)] => 0 [(1,5),(2,3),(4,6),(7,8),(9,10)] => 1 [(1,6),(2,3),(4,5),(7,8),(9,10)] => 0 [(1,7),(2,3),(4,5),(6,8),(9,10)] => 1 [(1,8),(2,3),(4,5),(6,7),(9,10)] => 0 [(1,9),(2,3),(4,5),(6,7),(8,10)] => 1 [(1,10),(2,3),(4,5),(6,7),(8,9)] => 0 [(1,10),(2,4),(3,5),(6,7),(8,9)] => 1 [(1,9),(2,4),(3,5),(6,7),(8,10)] => 2 [(1,8),(2,4),(3,5),(6,7),(9,10)] => 1 [(1,7),(2,4),(3,5),(6,8),(9,10)] => 2 [(1,6),(2,4),(3,5),(7,8),(9,10)] => 1 [(1,5),(2,4),(3,6),(7,8),(9,10)] => 2 [(1,4),(2,5),(3,6),(7,8),(9,10)] => 1 [(1,3),(2,5),(4,6),(7,8),(9,10)] => 2 [(1,2),(3,5),(4,6),(7,8),(9,10)] => 1 [(1,2),(3,6),(4,5),(7,8),(9,10)] => 0 [(1,3),(2,6),(4,5),(7,8),(9,10)] => 1 [(1,4),(2,6),(3,5),(7,8),(9,10)] => 2 [(1,5),(2,6),(3,4),(7,8),(9,10)] => 1 [(1,6),(2,5),(3,4),(7,8),(9,10)] => 0 [(1,7),(2,5),(3,4),(6,8),(9,10)] => 1 [(1,8),(2,5),(3,4),(6,7),(9,10)] => 0 [(1,9),(2,5),(3,4),(6,7),(8,10)] => 1 [(1,10),(2,5),(3,4),(6,7),(8,9)] => 0 [(1,10),(2,6),(3,4),(5,7),(8,9)] => 1 [(1,9),(2,6),(3,4),(5,7),(8,10)] => 2 [(1,8),(2,6),(3,4),(5,7),(9,10)] => 1 [(1,7),(2,6),(3,4),(5,8),(9,10)] => 2 [(1,6),(2,7),(3,4),(5,8),(9,10)] => 1 [(1,5),(2,7),(3,4),(6,8),(9,10)] => 2 [(1,4),(2,7),(3,5),(6,8),(9,10)] => 3 [(1,3),(2,7),(4,5),(6,8),(9,10)] => 2 [(1,2),(3,7),(4,5),(6,8),(9,10)] => 1 [(1,2),(3,8),(4,5),(6,7),(9,10)] => 0 [(1,3),(2,8),(4,5),(6,7),(9,10)] => 1 [(1,4),(2,8),(3,5),(6,7),(9,10)] => 2 [(1,5),(2,8),(3,4),(6,7),(9,10)] => 1 [(1,6),(2,8),(3,4),(5,7),(9,10)] => 2 [(1,7),(2,8),(3,4),(5,6),(9,10)] => 1 [(1,8),(2,7),(3,4),(5,6),(9,10)] => 0 [(1,9),(2,7),(3,4),(5,6),(8,10)] => 1 [(1,10),(2,7),(3,4),(5,6),(8,9)] => 0 [(1,10),(2,8),(3,4),(5,6),(7,9)] => 1 [(1,9),(2,8),(3,4),(5,6),(7,10)] => 2 [(1,8),(2,9),(3,4),(5,6),(7,10)] => 1 [(1,7),(2,9),(3,4),(5,6),(8,10)] => 2 [(1,6),(2,9),(3,4),(5,7),(8,10)] => 3 [(1,5),(2,9),(3,4),(6,7),(8,10)] => 2 [(1,4),(2,9),(3,5),(6,7),(8,10)] => 3 [(1,3),(2,9),(4,5),(6,7),(8,10)] => 2 [(1,2),(3,9),(4,5),(6,7),(8,10)] => 1 [(1,2),(3,10),(4,5),(6,7),(8,9)] => 0 [(1,3),(2,10),(4,5),(6,7),(8,9)] => 1 [(1,4),(2,10),(3,5),(6,7),(8,9)] => 2 [(1,5),(2,10),(3,4),(6,7),(8,9)] => 1 [(1,6),(2,10),(3,4),(5,7),(8,9)] => 2 [(1,7),(2,10),(3,4),(5,6),(8,9)] => 1 [(1,8),(2,10),(3,4),(5,6),(7,9)] => 2 [(1,9),(2,10),(3,4),(5,6),(7,8)] => 1 [(1,10),(2,9),(3,4),(5,6),(7,8)] => 0 [(1,10),(2,9),(3,5),(4,6),(7,8)] => 1 [(1,9),(2,10),(3,5),(4,6),(7,8)] => 2 [(1,8),(2,10),(3,5),(4,6),(7,9)] => 3 [(1,7),(2,10),(3,5),(4,6),(8,9)] => 2 [(1,6),(2,10),(3,5),(4,7),(8,9)] => 3 [(1,5),(2,10),(3,6),(4,7),(8,9)] => 2 [(1,4),(2,10),(3,6),(5,7),(8,9)] => 3 [(1,3),(2,10),(4,6),(5,7),(8,9)] => 2 [(1,2),(3,10),(4,6),(5,7),(8,9)] => 1 [(1,2),(3,9),(4,6),(5,7),(8,10)] => 2 [(1,3),(2,9),(4,6),(5,7),(8,10)] => 3 [(1,4),(2,9),(3,6),(5,7),(8,10)] => 4 [(1,5),(2,9),(3,6),(4,7),(8,10)] => 3 [(1,6),(2,9),(3,5),(4,7),(8,10)] => 4 [(1,7),(2,9),(3,5),(4,6),(8,10)] => 3 [(1,8),(2,9),(3,5),(4,6),(7,10)] => 2 [(1,9),(2,8),(3,5),(4,6),(7,10)] => 3 [(1,10),(2,8),(3,5),(4,6),(7,9)] => 2 [(1,10),(2,7),(3,5),(4,6),(8,9)] => 1 [(1,9),(2,7),(3,5),(4,6),(8,10)] => 2 [(1,8),(2,7),(3,5),(4,6),(9,10)] => 1 [(1,7),(2,8),(3,5),(4,6),(9,10)] => 2 [(1,6),(2,8),(3,5),(4,7),(9,10)] => 3 [(1,5),(2,8),(3,6),(4,7),(9,10)] => 2 [(1,4),(2,8),(3,6),(5,7),(9,10)] => 3 [(1,3),(2,8),(4,6),(5,7),(9,10)] => 2 [(1,2),(3,8),(4,6),(5,7),(9,10)] => 1 [(1,2),(3,7),(4,6),(5,8),(9,10)] => 2 [(1,3),(2,7),(4,6),(5,8),(9,10)] => 3 [(1,4),(2,7),(3,6),(5,8),(9,10)] => 2 [(1,5),(2,7),(3,6),(4,8),(9,10)] => 1 [(1,6),(2,7),(3,5),(4,8),(9,10)] => 2 [(1,7),(2,6),(3,5),(4,8),(9,10)] => 3 [(1,8),(2,6),(3,5),(4,7),(9,10)] => 2 [(1,9),(2,6),(3,5),(4,7),(8,10)] => 3 [(1,10),(2,6),(3,5),(4,7),(8,9)] => 2 [(1,10),(2,5),(3,6),(4,7),(8,9)] => 1 [(1,9),(2,5),(3,6),(4,7),(8,10)] => 2 [(1,8),(2,5),(3,6),(4,7),(9,10)] => 1 [(1,7),(2,5),(3,6),(4,8),(9,10)] => 2 [(1,6),(2,5),(3,7),(4,8),(9,10)] => 1 [(1,5),(2,6),(3,7),(4,8),(9,10)] => 2 [(1,4),(2,6),(3,7),(5,8),(9,10)] => 1 [(1,3),(2,6),(4,7),(5,8),(9,10)] => 2 [(1,2),(3,6),(4,7),(5,8),(9,10)] => 1 [(1,2),(3,5),(4,7),(6,8),(9,10)] => 2 [(1,3),(2,5),(4,7),(6,8),(9,10)] => 3 [(1,4),(2,5),(3,7),(6,8),(9,10)] => 2 [(1,5),(2,4),(3,7),(6,8),(9,10)] => 3 [(1,6),(2,4),(3,7),(5,8),(9,10)] => 2 [(1,7),(2,4),(3,6),(5,8),(9,10)] => 3 [(1,8),(2,4),(3,6),(5,7),(9,10)] => 2 [(1,9),(2,4),(3,6),(5,7),(8,10)] => 3 [(1,10),(2,4),(3,6),(5,7),(8,9)] => 2 [(1,10),(2,3),(4,6),(5,7),(8,9)] => 1 [(1,9),(2,3),(4,6),(5,7),(8,10)] => 2 [(1,8),(2,3),(4,6),(5,7),(9,10)] => 1 [(1,7),(2,3),(4,6),(5,8),(9,10)] => 2 [(1,6),(2,3),(4,7),(5,8),(9,10)] => 1 [(1,5),(2,3),(4,7),(6,8),(9,10)] => 2 [(1,4),(2,3),(5,7),(6,8),(9,10)] => 1 [(1,3),(2,4),(5,7),(6,8),(9,10)] => 2 [(1,2),(3,4),(5,7),(6,8),(9,10)] => 1 [(1,2),(3,4),(5,8),(6,7),(9,10)] => 0 [(1,3),(2,4),(5,8),(6,7),(9,10)] => 1 [(1,4),(2,3),(5,8),(6,7),(9,10)] => 0 [(1,5),(2,3),(4,8),(6,7),(9,10)] => 1 [(1,6),(2,3),(4,8),(5,7),(9,10)] => 2 [(1,7),(2,3),(4,8),(5,6),(9,10)] => 1 [(1,8),(2,3),(4,7),(5,6),(9,10)] => 0 [(1,9),(2,3),(4,7),(5,6),(8,10)] => 1 [(1,10),(2,3),(4,7),(5,6),(8,9)] => 0 [(1,10),(2,4),(3,7),(5,6),(8,9)] => 1 [(1,9),(2,4),(3,7),(5,6),(8,10)] => 2 [(1,8),(2,4),(3,7),(5,6),(9,10)] => 1 [(1,7),(2,4),(3,8),(5,6),(9,10)] => 2 [(1,6),(2,4),(3,8),(5,7),(9,10)] => 3 [(1,5),(2,4),(3,8),(6,7),(9,10)] => 2 [(1,4),(2,5),(3,8),(6,7),(9,10)] => 1 [(1,3),(2,5),(4,8),(6,7),(9,10)] => 2 [(1,2),(3,5),(4,8),(6,7),(9,10)] => 1 [(1,2),(3,6),(4,8),(5,7),(9,10)] => 2 [(1,3),(2,6),(4,8),(5,7),(9,10)] => 3 [(1,4),(2,6),(3,8),(5,7),(9,10)] => 2 [(1,5),(2,6),(3,8),(4,7),(9,10)] => 1 [(1,6),(2,5),(3,8),(4,7),(9,10)] => 2 [(1,7),(2,5),(3,8),(4,6),(9,10)] => 3 [(1,8),(2,5),(3,7),(4,6),(9,10)] => 2 [(1,9),(2,5),(3,7),(4,6),(8,10)] => 3 [(1,10),(2,5),(3,7),(4,6),(8,9)] => 2 [(1,10),(2,6),(3,7),(4,5),(8,9)] => 1 [(1,9),(2,6),(3,7),(4,5),(8,10)] => 2 [(1,8),(2,6),(3,7),(4,5),(9,10)] => 1 [(1,7),(2,6),(3,8),(4,5),(9,10)] => 2 [(1,6),(2,7),(3,8),(4,5),(9,10)] => 1 [(1,5),(2,7),(3,8),(4,6),(9,10)] => 2 [(1,4),(2,7),(3,8),(5,6),(9,10)] => 1 [(1,3),(2,7),(4,8),(5,6),(9,10)] => 2 [(1,2),(3,7),(4,8),(5,6),(9,10)] => 1 [(1,2),(3,8),(4,7),(5,6),(9,10)] => 0 [(1,3),(2,8),(4,7),(5,6),(9,10)] => 1 [(1,4),(2,8),(3,7),(5,6),(9,10)] => 2 [(1,5),(2,8),(3,7),(4,6),(9,10)] => 3 [(1,6),(2,8),(3,7),(4,5),(9,10)] => 2 [(1,7),(2,8),(3,6),(4,5),(9,10)] => 1 [(1,8),(2,7),(3,6),(4,5),(9,10)] => 0 [(1,9),(2,7),(3,6),(4,5),(8,10)] => 1 [(1,10),(2,7),(3,6),(4,5),(8,9)] => 0 [(1,10),(2,8),(3,6),(4,5),(7,9)] => 1 [(1,9),(2,8),(3,6),(4,5),(7,10)] => 2 [(1,8),(2,9),(3,6),(4,5),(7,10)] => 1 [(1,7),(2,9),(3,6),(4,5),(8,10)] => 2 [(1,6),(2,9),(3,7),(4,5),(8,10)] => 3 [(1,5),(2,9),(3,7),(4,6),(8,10)] => 4 [(1,4),(2,9),(3,7),(5,6),(8,10)] => 3 [(1,3),(2,9),(4,7),(5,6),(8,10)] => 2 [(1,2),(3,9),(4,7),(5,6),(8,10)] => 1 [(1,2),(3,10),(4,7),(5,6),(8,9)] => 0 [(1,3),(2,10),(4,7),(5,6),(8,9)] => 1 [(1,4),(2,10),(3,7),(5,6),(8,9)] => 2 [(1,5),(2,10),(3,7),(4,6),(8,9)] => 3 [(1,6),(2,10),(3,7),(4,5),(8,9)] => 2 [(1,7),(2,10),(3,6),(4,5),(8,9)] => 1 [(1,8),(2,10),(3,6),(4,5),(7,9)] => 2 [(1,9),(2,10),(3,6),(4,5),(7,8)] => 1 [(1,10),(2,9),(3,6),(4,5),(7,8)] => 0 [(1,10),(2,9),(3,7),(4,5),(6,8)] => 1 [(1,9),(2,10),(3,7),(4,5),(6,8)] => 2 [(1,8),(2,10),(3,7),(4,5),(6,9)] => 3 [(1,7),(2,10),(3,8),(4,5),(6,9)] => 2 [(1,6),(2,10),(3,8),(4,5),(7,9)] => 3 [(1,5),(2,10),(3,8),(4,6),(7,9)] => 4 [(1,4),(2,10),(3,8),(5,6),(7,9)] => 3 [(1,3),(2,10),(4,8),(5,6),(7,9)] => 2 [(1,2),(3,10),(4,8),(5,6),(7,9)] => 1 [(1,2),(3,9),(4,8),(5,6),(7,10)] => 2 [(1,3),(2,9),(4,8),(5,6),(7,10)] => 3 [(1,4),(2,9),(3,8),(5,6),(7,10)] => 2 [(1,5),(2,9),(3,8),(4,6),(7,10)] => 3 [(1,6),(2,9),(3,8),(4,5),(7,10)] => 2 [(1,7),(2,9),(3,8),(4,5),(6,10)] => 1 [(1,8),(2,9),(3,7),(4,5),(6,10)] => 2 [(1,9),(2,8),(3,7),(4,5),(6,10)] => 3 [(1,10),(2,8),(3,7),(4,5),(6,9)] => 2 [(1,10),(2,7),(3,8),(4,5),(6,9)] => 1 [(1,9),(2,7),(3,8),(4,5),(6,10)] => 2 [(1,8),(2,7),(3,9),(4,5),(6,10)] => 1 [(1,7),(2,8),(3,9),(4,5),(6,10)] => 2 [(1,6),(2,8),(3,9),(4,5),(7,10)] => 1 [(1,5),(2,8),(3,9),(4,6),(7,10)] => 2 [(1,4),(2,8),(3,9),(5,6),(7,10)] => 1 [(1,3),(2,8),(4,9),(5,6),(7,10)] => 2 [(1,2),(3,8),(4,9),(5,6),(7,10)] => 1 [(1,2),(3,7),(4,9),(5,6),(8,10)] => 2 [(1,3),(2,7),(4,9),(5,6),(8,10)] => 3 [(1,4),(2,7),(3,9),(5,6),(8,10)] => 2 [(1,5),(2,7),(3,9),(4,6),(8,10)] => 3 [(1,6),(2,7),(3,9),(4,5),(8,10)] => 2 [(1,7),(2,6),(3,9),(4,5),(8,10)] => 3 [(1,8),(2,6),(3,9),(4,5),(7,10)] => 2 [(1,9),(2,6),(3,8),(4,5),(7,10)] => 3 [(1,10),(2,6),(3,8),(4,5),(7,9)] => 2 [(1,10),(2,5),(3,8),(4,6),(7,9)] => 3 [(1,9),(2,5),(3,8),(4,6),(7,10)] => 4 [(1,8),(2,5),(3,9),(4,6),(7,10)] => 3 [(1,7),(2,5),(3,9),(4,6),(8,10)] => 4 [(1,6),(2,5),(3,9),(4,7),(8,10)] => 3 [(1,5),(2,6),(3,9),(4,7),(8,10)] => 2 [(1,4),(2,6),(3,9),(5,7),(8,10)] => 3 [(1,3),(2,6),(4,9),(5,7),(8,10)] => 4 [(1,2),(3,6),(4,9),(5,7),(8,10)] => 3 [(1,2),(3,5),(4,9),(6,7),(8,10)] => 2 [(1,3),(2,5),(4,9),(6,7),(8,10)] => 3 [(1,4),(2,5),(3,9),(6,7),(8,10)] => 2 [(1,5),(2,4),(3,9),(6,7),(8,10)] => 3 [(1,6),(2,4),(3,9),(5,7),(8,10)] => 4 [(1,7),(2,4),(3,9),(5,6),(8,10)] => 3 [(1,8),(2,4),(3,9),(5,6),(7,10)] => 2 [(1,9),(2,4),(3,8),(5,6),(7,10)] => 3 [(1,10),(2,4),(3,8),(5,6),(7,9)] => 2 [(1,10),(2,3),(4,8),(5,6),(7,9)] => 1 [(1,9),(2,3),(4,8),(5,6),(7,10)] => 2 [(1,8),(2,3),(4,9),(5,6),(7,10)] => 1 [(1,7),(2,3),(4,9),(5,6),(8,10)] => 2 [(1,6),(2,3),(4,9),(5,7),(8,10)] => 3 [(1,5),(2,3),(4,9),(6,7),(8,10)] => 2 [(1,4),(2,3),(5,9),(6,7),(8,10)] => 1 [(1,3),(2,4),(5,9),(6,7),(8,10)] => 2 [(1,2),(3,4),(5,9),(6,7),(8,10)] => 1 [(1,2),(3,4),(5,10),(6,7),(8,9)] => 0 [(1,3),(2,4),(5,10),(6,7),(8,9)] => 1 [(1,4),(2,3),(5,10),(6,7),(8,9)] => 0 [(1,5),(2,3),(4,10),(6,7),(8,9)] => 1 [(1,6),(2,3),(4,10),(5,7),(8,9)] => 2 [(1,7),(2,3),(4,10),(5,6),(8,9)] => 1 [(1,8),(2,3),(4,10),(5,6),(7,9)] => 2 [(1,9),(2,3),(4,10),(5,6),(7,8)] => 1 [(1,10),(2,3),(4,9),(5,6),(7,8)] => 0 [(1,10),(2,4),(3,9),(5,6),(7,8)] => 1 [(1,9),(2,4),(3,10),(5,6),(7,8)] => 2 [(1,8),(2,4),(3,10),(5,6),(7,9)] => 3 [(1,7),(2,4),(3,10),(5,6),(8,9)] => 2 [(1,6),(2,4),(3,10),(5,7),(8,9)] => 3 [(1,5),(2,4),(3,10),(6,7),(8,9)] => 2 [(1,4),(2,5),(3,10),(6,7),(8,9)] => 1 [(1,3),(2,5),(4,10),(6,7),(8,9)] => 2 [(1,2),(3,5),(4,10),(6,7),(8,9)] => 1 [(1,2),(3,6),(4,10),(5,7),(8,9)] => 2 [(1,3),(2,6),(4,10),(5,7),(8,9)] => 3 [(1,4),(2,6),(3,10),(5,7),(8,9)] => 2 [(1,5),(2,6),(3,10),(4,7),(8,9)] => 1 [(1,6),(2,5),(3,10),(4,7),(8,9)] => 2 [(1,7),(2,5),(3,10),(4,6),(8,9)] => 3 [(1,8),(2,5),(3,10),(4,6),(7,9)] => 4 [(1,9),(2,5),(3,10),(4,6),(7,8)] => 3 [(1,10),(2,5),(3,9),(4,6),(7,8)] => 2 [(1,10),(2,6),(3,9),(4,5),(7,8)] => 1 [(1,9),(2,6),(3,10),(4,5),(7,8)] => 2 [(1,8),(2,6),(3,10),(4,5),(7,9)] => 3 [(1,7),(2,6),(3,10),(4,5),(8,9)] => 2 [(1,6),(2,7),(3,10),(4,5),(8,9)] => 1 [(1,5),(2,7),(3,10),(4,6),(8,9)] => 2 [(1,4),(2,7),(3,10),(5,6),(8,9)] => 1 [(1,3),(2,7),(4,10),(5,6),(8,9)] => 2 [(1,2),(3,7),(4,10),(5,6),(8,9)] => 1 [(1,2),(3,8),(4,10),(5,6),(7,9)] => 2 [(1,3),(2,8),(4,10),(5,6),(7,9)] => 3 [(1,4),(2,8),(3,10),(5,6),(7,9)] => 2 [(1,5),(2,8),(3,10),(4,6),(7,9)] => 3 [(1,6),(2,8),(3,10),(4,5),(7,9)] => 2 [(1,7),(2,8),(3,10),(4,5),(6,9)] => 1 [(1,8),(2,7),(3,10),(4,5),(6,9)] => 2 [(1,9),(2,7),(3,10),(4,5),(6,8)] => 3 [(1,10),(2,7),(3,9),(4,5),(6,8)] => 2 [(1,10),(2,8),(3,9),(4,5),(6,7)] => 1 [(1,9),(2,8),(3,10),(4,5),(6,7)] => 2 [(1,8),(2,9),(3,10),(4,5),(6,7)] => 1 [(1,7),(2,9),(3,10),(4,5),(6,8)] => 2 [(1,6),(2,9),(3,10),(4,5),(7,8)] => 1 [(1,5),(2,9),(3,10),(4,6),(7,8)] => 2 [(1,4),(2,9),(3,10),(5,6),(7,8)] => 1 [(1,3),(2,9),(4,10),(5,6),(7,8)] => 2 [(1,2),(3,9),(4,10),(5,6),(7,8)] => 1 [(1,2),(3,10),(4,9),(5,6),(7,8)] => 0 [(1,3),(2,10),(4,9),(5,6),(7,8)] => 1 [(1,4),(2,10),(3,9),(5,6),(7,8)] => 2 [(1,5),(2,10),(3,9),(4,6),(7,8)] => 3 [(1,6),(2,10),(3,9),(4,5),(7,8)] => 2 [(1,7),(2,10),(3,9),(4,5),(6,8)] => 3 [(1,8),(2,10),(3,9),(4,5),(6,7)] => 2 [(1,9),(2,10),(3,8),(4,5),(6,7)] => 1 [(1,10),(2,9),(3,8),(4,5),(6,7)] => 0 [(1,10),(2,9),(3,8),(4,6),(5,7)] => 1 [(1,9),(2,10),(3,8),(4,6),(5,7)] => 2 [(1,8),(2,10),(3,9),(4,6),(5,7)] => 3 [(1,7),(2,10),(3,9),(4,6),(5,8)] => 4 [(1,6),(2,10),(3,9),(4,7),(5,8)] => 3 [(1,5),(2,10),(3,9),(4,7),(6,8)] => 4 [(1,4),(2,10),(3,9),(5,7),(6,8)] => 3 [(1,3),(2,10),(4,9),(5,7),(6,8)] => 2 [(1,2),(3,10),(4,9),(5,7),(6,8)] => 1 [(1,2),(3,9),(4,10),(5,7),(6,8)] => 2 [(1,3),(2,9),(4,10),(5,7),(6,8)] => 3 [(1,4),(2,9),(3,10),(5,7),(6,8)] => 2 [(1,5),(2,9),(3,10),(4,7),(6,8)] => 3 [(1,6),(2,9),(3,10),(4,7),(5,8)] => 2 [(1,7),(2,9),(3,10),(4,6),(5,8)] => 3 [(1,8),(2,9),(3,10),(4,6),(5,7)] => 2 [(1,9),(2,8),(3,10),(4,6),(5,7)] => 3 [(1,10),(2,8),(3,9),(4,6),(5,7)] => 2 [(1,10),(2,7),(3,9),(4,6),(5,8)] => 3 [(1,9),(2,7),(3,10),(4,6),(5,8)] => 4 [(1,8),(2,7),(3,10),(4,6),(5,9)] => 3 [(1,7),(2,8),(3,10),(4,6),(5,9)] => 2 [(1,6),(2,8),(3,10),(4,7),(5,9)] => 3 [(1,5),(2,8),(3,10),(4,7),(6,9)] => 2 [(1,4),(2,8),(3,10),(5,7),(6,9)] => 3 [(1,3),(2,8),(4,10),(5,7),(6,9)] => 4 [(1,2),(3,8),(4,10),(5,7),(6,9)] => 3 [(1,2),(3,7),(4,10),(5,8),(6,9)] => 2 [(1,3),(2,7),(4,10),(5,8),(6,9)] => 3 [(1,4),(2,7),(3,10),(5,8),(6,9)] => 2 [(1,5),(2,7),(3,10),(4,8),(6,9)] => 3 [(1,6),(2,7),(3,10),(4,8),(5,9)] => 2 [(1,7),(2,6),(3,10),(4,8),(5,9)] => 3 [(1,8),(2,6),(3,10),(4,7),(5,9)] => 2 [(1,9),(2,6),(3,10),(4,7),(5,8)] => 3 [(1,10),(2,6),(3,9),(4,7),(5,8)] => 2 [(1,10),(2,5),(3,9),(4,7),(6,8)] => 3 [(1,9),(2,5),(3,10),(4,7),(6,8)] => 4 [(1,8),(2,5),(3,10),(4,7),(6,9)] => 3 [(1,7),(2,5),(3,10),(4,8),(6,9)] => 2 [(1,6),(2,5),(3,10),(4,8),(7,9)] => 3 [(1,5),(2,6),(3,10),(4,8),(7,9)] => 2 [(1,4),(2,6),(3,10),(5,8),(7,9)] => 3 [(1,3),(2,6),(4,10),(5,8),(7,9)] => 4 [(1,2),(3,6),(4,10),(5,8),(7,9)] => 3 [(1,2),(3,5),(4,10),(6,8),(7,9)] => 2 [(1,3),(2,5),(4,10),(6,8),(7,9)] => 3 [(1,4),(2,5),(3,10),(6,8),(7,9)] => 2 [(1,5),(2,4),(3,10),(6,8),(7,9)] => 3 [(1,6),(2,4),(3,10),(5,8),(7,9)] => 4 [(1,7),(2,4),(3,10),(5,8),(6,9)] => 3 [(1,8),(2,4),(3,10),(5,7),(6,9)] => 4 [(1,9),(2,4),(3,10),(5,7),(6,8)] => 3 [(1,10),(2,4),(3,9),(5,7),(6,8)] => 2 [(1,10),(2,3),(4,9),(5,7),(6,8)] => 1 [(1,9),(2,3),(4,10),(5,7),(6,8)] => 2 [(1,8),(2,3),(4,10),(5,7),(6,9)] => 3 [(1,7),(2,3),(4,10),(5,8),(6,9)] => 2 [(1,6),(2,3),(4,10),(5,8),(7,9)] => 3 [(1,5),(2,3),(4,10),(6,8),(7,9)] => 2 [(1,4),(2,3),(5,10),(6,8),(7,9)] => 1 [(1,3),(2,4),(5,10),(6,8),(7,9)] => 2 [(1,2),(3,4),(5,10),(6,8),(7,9)] => 1 [(1,2),(3,4),(5,9),(6,8),(7,10)] => 2 [(1,3),(2,4),(5,9),(6,8),(7,10)] => 3 [(1,4),(2,3),(5,9),(6,8),(7,10)] => 2 [(1,5),(2,3),(4,9),(6,8),(7,10)] => 3 [(1,6),(2,3),(4,9),(5,8),(7,10)] => 2 [(1,7),(2,3),(4,9),(5,8),(6,10)] => 1 [(1,8),(2,3),(4,9),(5,7),(6,10)] => 2 [(1,9),(2,3),(4,8),(5,7),(6,10)] => 3 [(1,10),(2,3),(4,8),(5,7),(6,9)] => 2 [(1,10),(2,4),(3,8),(5,7),(6,9)] => 3 [(1,9),(2,4),(3,8),(5,7),(6,10)] => 4 [(1,8),(2,4),(3,9),(5,7),(6,10)] => 3 [(1,7),(2,4),(3,9),(5,8),(6,10)] => 2 [(1,6),(2,4),(3,9),(5,8),(7,10)] => 3 [(1,5),(2,4),(3,9),(6,8),(7,10)] => 4 [(1,4),(2,5),(3,9),(6,8),(7,10)] => 3 [(1,3),(2,5),(4,9),(6,8),(7,10)] => 4 [(1,2),(3,5),(4,9),(6,8),(7,10)] => 3 [(1,2),(3,6),(4,9),(5,8),(7,10)] => 2 [(1,3),(2,6),(4,9),(5,8),(7,10)] => 3 [(1,4),(2,6),(3,9),(5,8),(7,10)] => 2 [(1,5),(2,6),(3,9),(4,8),(7,10)] => 3 [(1,6),(2,5),(3,9),(4,8),(7,10)] => 2 [(1,7),(2,5),(3,9),(4,8),(6,10)] => 3 [(1,8),(2,5),(3,9),(4,7),(6,10)] => 2 [(1,9),(2,5),(3,8),(4,7),(6,10)] => 3 [(1,10),(2,5),(3,8),(4,7),(6,9)] => 2 [(1,10),(2,6),(3,8),(4,7),(5,9)] => 1 [(1,9),(2,6),(3,8),(4,7),(5,10)] => 2 [(1,8),(2,6),(3,9),(4,7),(5,10)] => 3 [(1,7),(2,6),(3,9),(4,8),(5,10)] => 2 [(1,6),(2,7),(3,9),(4,8),(5,10)] => 3 [(1,5),(2,7),(3,9),(4,8),(6,10)] => 2 [(1,4),(2,7),(3,9),(5,8),(6,10)] => 3 [(1,3),(2,7),(4,9),(5,8),(6,10)] => 2 [(1,2),(3,7),(4,9),(5,8),(6,10)] => 1 [(1,2),(3,8),(4,9),(5,7),(6,10)] => 2 [(1,3),(2,8),(4,9),(5,7),(6,10)] => 3 [(1,4),(2,8),(3,9),(5,7),(6,10)] => 2 [(1,5),(2,8),(3,9),(4,7),(6,10)] => 3 [(1,6),(2,8),(3,9),(4,7),(5,10)] => 2 [(1,7),(2,8),(3,9),(4,6),(5,10)] => 3 [(1,8),(2,7),(3,9),(4,6),(5,10)] => 2 [(1,9),(2,7),(3,8),(4,6),(5,10)] => 3 [(1,10),(2,7),(3,8),(4,6),(5,9)] => 2 [(1,10),(2,8),(3,7),(4,6),(5,9)] => 3 [(1,9),(2,8),(3,7),(4,6),(5,10)] => 4 [(1,8),(2,9),(3,7),(4,6),(5,10)] => 3 [(1,7),(2,9),(3,8),(4,6),(5,10)] => 2 [(1,6),(2,9),(3,8),(4,7),(5,10)] => 1 [(1,5),(2,9),(3,8),(4,7),(6,10)] => 2 [(1,4),(2,9),(3,8),(5,7),(6,10)] => 3 [(1,3),(2,9),(4,8),(5,7),(6,10)] => 4 [(1,2),(3,9),(4,8),(5,7),(6,10)] => 3 [(1,2),(3,10),(4,8),(5,7),(6,9)] => 2 [(1,3),(2,10),(4,8),(5,7),(6,9)] => 3 [(1,4),(2,10),(3,8),(5,7),(6,9)] => 4 [(1,5),(2,10),(3,8),(4,7),(6,9)] => 3 [(1,6),(2,10),(3,8),(4,7),(5,9)] => 2 [(1,7),(2,10),(3,8),(4,6),(5,9)] => 3 [(1,8),(2,10),(3,7),(4,6),(5,9)] => 4 [(1,9),(2,10),(3,7),(4,6),(5,8)] => 3 [(1,10),(2,9),(3,7),(4,6),(5,8)] => 2 [(1,10),(2,9),(3,6),(4,7),(5,8)] => 1 [(1,9),(2,10),(3,6),(4,7),(5,8)] => 2 [(1,8),(2,10),(3,6),(4,7),(5,9)] => 3 [(1,7),(2,10),(3,6),(4,8),(5,9)] => 2 [(1,6),(2,10),(3,7),(4,8),(5,9)] => 3 [(1,5),(2,10),(3,7),(4,8),(6,9)] => 2 [(1,4),(2,10),(3,7),(5,8),(6,9)] => 3 [(1,3),(2,10),(4,7),(5,8),(6,9)] => 2 [(1,2),(3,10),(4,7),(5,8),(6,9)] => 1 [(1,2),(3,9),(4,7),(5,8),(6,10)] => 2 [(1,3),(2,9),(4,7),(5,8),(6,10)] => 3 [(1,4),(2,9),(3,7),(5,8),(6,10)] => 2 [(1,5),(2,9),(3,7),(4,8),(6,10)] => 3 [(1,6),(2,9),(3,7),(4,8),(5,10)] => 2 [(1,7),(2,9),(3,6),(4,8),(5,10)] => 3 [(1,8),(2,9),(3,6),(4,7),(5,10)] => 2 [(1,9),(2,8),(3,6),(4,7),(5,10)] => 3 [(1,10),(2,8),(3,6),(4,7),(5,9)] => 2 [(1,10),(2,7),(3,6),(4,8),(5,9)] => 1 [(1,9),(2,7),(3,6),(4,8),(5,10)] => 2 [(1,8),(2,7),(3,6),(4,9),(5,10)] => 1 [(1,7),(2,8),(3,6),(4,9),(5,10)] => 2 [(1,6),(2,8),(3,7),(4,9),(5,10)] => 3 [(1,5),(2,8),(3,7),(4,9),(6,10)] => 2 [(1,4),(2,8),(3,7),(5,9),(6,10)] => 3 [(1,3),(2,8),(4,7),(5,9),(6,10)] => 2 [(1,2),(3,8),(4,7),(5,9),(6,10)] => 1 [(1,2),(3,7),(4,8),(5,9),(6,10)] => 2 [(1,3),(2,7),(4,8),(5,9),(6,10)] => 3 [(1,4),(2,7),(3,8),(5,9),(6,10)] => 2 [(1,5),(2,7),(3,8),(4,9),(6,10)] => 3 [(1,6),(2,7),(3,8),(4,9),(5,10)] => 2 [(1,7),(2,6),(3,8),(4,9),(5,10)] => 3 [(1,8),(2,6),(3,7),(4,9),(5,10)] => 2 [(1,9),(2,6),(3,7),(4,8),(5,10)] => 3 [(1,10),(2,6),(3,7),(4,8),(5,9)] => 2 [(1,10),(2,5),(3,7),(4,8),(6,9)] => 1 [(1,9),(2,5),(3,7),(4,8),(6,10)] => 2 [(1,8),(2,5),(3,7),(4,9),(6,10)] => 3 [(1,7),(2,5),(3,8),(4,9),(6,10)] => 2 [(1,6),(2,5),(3,8),(4,9),(7,10)] => 1 [(1,5),(2,6),(3,8),(4,9),(7,10)] => 2 [(1,4),(2,6),(3,8),(5,9),(7,10)] => 3 [(1,3),(2,6),(4,8),(5,9),(7,10)] => 2 [(1,2),(3,6),(4,8),(5,9),(7,10)] => 1 [(1,2),(3,5),(4,8),(6,9),(7,10)] => 2 [(1,3),(2,5),(4,8),(6,9),(7,10)] => 3 [(1,4),(2,5),(3,8),(6,9),(7,10)] => 2 [(1,5),(2,4),(3,8),(6,9),(7,10)] => 3 [(1,6),(2,4),(3,8),(5,9),(7,10)] => 2 [(1,7),(2,4),(3,8),(5,9),(6,10)] => 3 [(1,8),(2,4),(3,7),(5,9),(6,10)] => 2 [(1,9),(2,4),(3,7),(5,8),(6,10)] => 3 [(1,10),(2,4),(3,7),(5,8),(6,9)] => 2 [(1,10),(2,3),(4,7),(5,8),(6,9)] => 1 [(1,9),(2,3),(4,7),(5,8),(6,10)] => 2 [(1,8),(2,3),(4,7),(5,9),(6,10)] => 1 [(1,7),(2,3),(4,8),(5,9),(6,10)] => 2 [(1,6),(2,3),(4,8),(5,9),(7,10)] => 1 [(1,5),(2,3),(4,8),(6,9),(7,10)] => 2 [(1,4),(2,3),(5,8),(6,9),(7,10)] => 1 [(1,3),(2,4),(5,8),(6,9),(7,10)] => 2 [(1,2),(3,4),(5,8),(6,9),(7,10)] => 1 [(1,2),(3,4),(5,7),(6,9),(8,10)] => 2 [(1,3),(2,4),(5,7),(6,9),(8,10)] => 3 [(1,4),(2,3),(5,7),(6,9),(8,10)] => 2 [(1,5),(2,3),(4,7),(6,9),(8,10)] => 3 [(1,6),(2,3),(4,7),(5,9),(8,10)] => 2 [(1,7),(2,3),(4,6),(5,9),(8,10)] => 3 [(1,8),(2,3),(4,6),(5,9),(7,10)] => 2 [(1,9),(2,3),(4,6),(5,8),(7,10)] => 3 [(1,10),(2,3),(4,6),(5,8),(7,9)] => 2 [(1,10),(2,4),(3,6),(5,8),(7,9)] => 3 [(1,9),(2,4),(3,6),(5,8),(7,10)] => 4 [(1,8),(2,4),(3,6),(5,9),(7,10)] => 3 [(1,7),(2,4),(3,6),(5,9),(8,10)] => 4 [(1,6),(2,4),(3,7),(5,9),(8,10)] => 3 [(1,5),(2,4),(3,7),(6,9),(8,10)] => 4 [(1,4),(2,5),(3,7),(6,9),(8,10)] => 3 [(1,3),(2,5),(4,7),(6,9),(8,10)] => 4 [(1,2),(3,5),(4,7),(6,9),(8,10)] => 3 [(1,2),(3,6),(4,7),(5,9),(8,10)] => 2 [(1,3),(2,6),(4,7),(5,9),(8,10)] => 3 [(1,4),(2,6),(3,7),(5,9),(8,10)] => 2 [(1,5),(2,6),(3,7),(4,9),(8,10)] => 3 [(1,6),(2,5),(3,7),(4,9),(8,10)] => 2 [(1,7),(2,5),(3,6),(4,9),(8,10)] => 3 [(1,8),(2,5),(3,6),(4,9),(7,10)] => 2 [(1,9),(2,5),(3,6),(4,8),(7,10)] => 3 [(1,10),(2,5),(3,6),(4,8),(7,9)] => 2 [(1,10),(2,6),(3,5),(4,8),(7,9)] => 3 [(1,9),(2,6),(3,5),(4,8),(7,10)] => 4 [(1,8),(2,6),(3,5),(4,9),(7,10)] => 3 [(1,7),(2,6),(3,5),(4,9),(8,10)] => 4 [(1,6),(2,7),(3,5),(4,9),(8,10)] => 3 [(1,5),(2,7),(3,6),(4,9),(8,10)] => 2 [(1,4),(2,7),(3,6),(5,9),(8,10)] => 3 [(1,3),(2,7),(4,6),(5,9),(8,10)] => 4 [(1,2),(3,7),(4,6),(5,9),(8,10)] => 3 [(1,2),(3,8),(4,6),(5,9),(7,10)] => 2 [(1,3),(2,8),(4,6),(5,9),(7,10)] => 3 [(1,4),(2,8),(3,6),(5,9),(7,10)] => 2 [(1,5),(2,8),(3,6),(4,9),(7,10)] => 3 [(1,6),(2,8),(3,5),(4,9),(7,10)] => 2 [(1,7),(2,8),(3,5),(4,9),(6,10)] => 3 [(1,8),(2,7),(3,5),(4,9),(6,10)] => 2 [(1,9),(2,7),(3,5),(4,8),(6,10)] => 3 [(1,10),(2,7),(3,5),(4,8),(6,9)] => 2 [(1,10),(2,8),(3,5),(4,7),(6,9)] => 3 [(1,9),(2,8),(3,5),(4,7),(6,10)] => 4 [(1,8),(2,9),(3,5),(4,7),(6,10)] => 3 [(1,7),(2,9),(3,5),(4,8),(6,10)] => 2 [(1,6),(2,9),(3,5),(4,8),(7,10)] => 3 [(1,5),(2,9),(3,6),(4,8),(7,10)] => 2 [(1,4),(2,9),(3,6),(5,8),(7,10)] => 3 [(1,3),(2,9),(4,6),(5,8),(7,10)] => 4 [(1,2),(3,9),(4,6),(5,8),(7,10)] => 3 [(1,2),(3,10),(4,6),(5,8),(7,9)] => 2 [(1,3),(2,10),(4,6),(5,8),(7,9)] => 3 [(1,4),(2,10),(3,6),(5,8),(7,9)] => 4 [(1,5),(2,10),(3,6),(4,8),(7,9)] => 3 [(1,6),(2,10),(3,5),(4,8),(7,9)] => 4 [(1,7),(2,10),(3,5),(4,8),(6,9)] => 3 [(1,8),(2,10),(3,5),(4,7),(6,9)] => 4 [(1,9),(2,10),(3,5),(4,7),(6,8)] => 3 [(1,10),(2,9),(3,5),(4,7),(6,8)] => 2 [(1,10),(2,9),(3,4),(5,7),(6,8)] => 1 [(1,9),(2,10),(3,4),(5,7),(6,8)] => 2 [(1,8),(2,10),(3,4),(5,7),(6,9)] => 3 [(1,7),(2,10),(3,4),(5,8),(6,9)] => 2 [(1,6),(2,10),(3,4),(5,8),(7,9)] => 3 [(1,5),(2,10),(3,4),(6,8),(7,9)] => 2 [(1,4),(2,10),(3,5),(6,8),(7,9)] => 3 [(1,3),(2,10),(4,5),(6,8),(7,9)] => 2 [(1,2),(3,10),(4,5),(6,8),(7,9)] => 1 [(1,2),(3,9),(4,5),(6,8),(7,10)] => 2 [(1,3),(2,9),(4,5),(6,8),(7,10)] => 3 [(1,4),(2,9),(3,5),(6,8),(7,10)] => 4 [(1,5),(2,9),(3,4),(6,8),(7,10)] => 3 [(1,6),(2,9),(3,4),(5,8),(7,10)] => 2 [(1,7),(2,9),(3,4),(5,8),(6,10)] => 1 [(1,8),(2,9),(3,4),(5,7),(6,10)] => 2 [(1,9),(2,8),(3,4),(5,7),(6,10)] => 3 [(1,10),(2,8),(3,4),(5,7),(6,9)] => 2 [(1,10),(2,7),(3,4),(5,8),(6,9)] => 1 [(1,9),(2,7),(3,4),(5,8),(6,10)] => 2 [(1,8),(2,7),(3,4),(5,9),(6,10)] => 1 [(1,7),(2,8),(3,4),(5,9),(6,10)] => 2 [(1,6),(2,8),(3,4),(5,9),(7,10)] => 1 [(1,5),(2,8),(3,4),(6,9),(7,10)] => 2 [(1,4),(2,8),(3,5),(6,9),(7,10)] => 3 [(1,3),(2,8),(4,5),(6,9),(7,10)] => 2 [(1,2),(3,8),(4,5),(6,9),(7,10)] => 1 [(1,2),(3,7),(4,5),(6,9),(8,10)] => 2 [(1,3),(2,7),(4,5),(6,9),(8,10)] => 3 [(1,4),(2,7),(3,5),(6,9),(8,10)] => 4 [(1,5),(2,7),(3,4),(6,9),(8,10)] => 3 [(1,6),(2,7),(3,4),(5,9),(8,10)] => 2 [(1,7),(2,6),(3,4),(5,9),(8,10)] => 3 [(1,8),(2,6),(3,4),(5,9),(7,10)] => 2 [(1,9),(2,6),(3,4),(5,8),(7,10)] => 3 [(1,10),(2,6),(3,4),(5,8),(7,9)] => 2 [(1,10),(2,5),(3,4),(6,8),(7,9)] => 1 [(1,9),(2,5),(3,4),(6,8),(7,10)] => 2 [(1,8),(2,5),(3,4),(6,9),(7,10)] => 1 [(1,7),(2,5),(3,4),(6,9),(8,10)] => 2 [(1,6),(2,5),(3,4),(7,9),(8,10)] => 1 [(1,5),(2,6),(3,4),(7,9),(8,10)] => 2 [(1,4),(2,6),(3,5),(7,9),(8,10)] => 3 [(1,3),(2,6),(4,5),(7,9),(8,10)] => 2 [(1,2),(3,6),(4,5),(7,9),(8,10)] => 1 [(1,2),(3,5),(4,6),(7,9),(8,10)] => 2 [(1,3),(2,5),(4,6),(7,9),(8,10)] => 3 [(1,4),(2,5),(3,6),(7,9),(8,10)] => 2 [(1,5),(2,4),(3,6),(7,9),(8,10)] => 3 [(1,6),(2,4),(3,5),(7,9),(8,10)] => 2 [(1,7),(2,4),(3,5),(6,9),(8,10)] => 3 [(1,8),(2,4),(3,5),(6,9),(7,10)] => 2 [(1,9),(2,4),(3,5),(6,8),(7,10)] => 3 [(1,10),(2,4),(3,5),(6,8),(7,9)] => 2 [(1,10),(2,3),(4,5),(6,8),(7,9)] => 1 [(1,9),(2,3),(4,5),(6,8),(7,10)] => 2 [(1,8),(2,3),(4,5),(6,9),(7,10)] => 1 [(1,7),(2,3),(4,5),(6,9),(8,10)] => 2 [(1,6),(2,3),(4,5),(7,9),(8,10)] => 1 [(1,5),(2,3),(4,6),(7,9),(8,10)] => 2 [(1,4),(2,3),(5,6),(7,9),(8,10)] => 1 [(1,3),(2,4),(5,6),(7,9),(8,10)] => 2 [(1,2),(3,4),(5,6),(7,9),(8,10)] => 1 [(1,2),(3,4),(5,6),(7,10),(8,9)] => 0 [(1,3),(2,4),(5,6),(7,10),(8,9)] => 1 [(1,4),(2,3),(5,6),(7,10),(8,9)] => 0 [(1,5),(2,3),(4,6),(7,10),(8,9)] => 1 [(1,6),(2,3),(4,5),(7,10),(8,9)] => 0 [(1,7),(2,3),(4,5),(6,10),(8,9)] => 1 [(1,8),(2,3),(4,5),(6,10),(7,9)] => 2 [(1,9),(2,3),(4,5),(6,10),(7,8)] => 1 [(1,10),(2,3),(4,5),(6,9),(7,8)] => 0 [(1,10),(2,4),(3,5),(6,9),(7,8)] => 1 [(1,9),(2,4),(3,5),(6,10),(7,8)] => 2 [(1,8),(2,4),(3,5),(6,10),(7,9)] => 3 [(1,7),(2,4),(3,5),(6,10),(8,9)] => 2 [(1,6),(2,4),(3,5),(7,10),(8,9)] => 1 [(1,5),(2,4),(3,6),(7,10),(8,9)] => 2 [(1,4),(2,5),(3,6),(7,10),(8,9)] => 1 [(1,3),(2,5),(4,6),(7,10),(8,9)] => 2 [(1,2),(3,5),(4,6),(7,10),(8,9)] => 1 [(1,2),(3,6),(4,5),(7,10),(8,9)] => 0 [(1,3),(2,6),(4,5),(7,10),(8,9)] => 1 [(1,4),(2,6),(3,5),(7,10),(8,9)] => 2 [(1,5),(2,6),(3,4),(7,10),(8,9)] => 1 [(1,6),(2,5),(3,4),(7,10),(8,9)] => 0 [(1,7),(2,5),(3,4),(6,10),(8,9)] => 1 [(1,8),(2,5),(3,4),(6,10),(7,9)] => 2 [(1,9),(2,5),(3,4),(6,10),(7,8)] => 1 [(1,10),(2,5),(3,4),(6,9),(7,8)] => 0 [(1,10),(2,6),(3,4),(5,9),(7,8)] => 1 [(1,9),(2,6),(3,4),(5,10),(7,8)] => 2 [(1,8),(2,6),(3,4),(5,10),(7,9)] => 3 [(1,7),(2,6),(3,4),(5,10),(8,9)] => 2 [(1,6),(2,7),(3,4),(5,10),(8,9)] => 1 [(1,5),(2,7),(3,4),(6,10),(8,9)] => 2 [(1,4),(2,7),(3,5),(6,10),(8,9)] => 3 [(1,3),(2,7),(4,5),(6,10),(8,9)] => 2 [(1,2),(3,7),(4,5),(6,10),(8,9)] => 1 [(1,2),(3,8),(4,5),(6,10),(7,9)] => 2 [(1,3),(2,8),(4,5),(6,10),(7,9)] => 3 [(1,4),(2,8),(3,5),(6,10),(7,9)] => 4 [(1,5),(2,8),(3,4),(6,10),(7,9)] => 3 [(1,6),(2,8),(3,4),(5,10),(7,9)] => 2 [(1,7),(2,8),(3,4),(5,10),(6,9)] => 1 [(1,8),(2,7),(3,4),(5,10),(6,9)] => 2 [(1,9),(2,7),(3,4),(5,10),(6,8)] => 3 [(1,10),(2,7),(3,4),(5,9),(6,8)] => 2 [(1,10),(2,8),(3,4),(5,9),(6,7)] => 1 [(1,9),(2,8),(3,4),(5,10),(6,7)] => 2 [(1,8),(2,9),(3,4),(5,10),(6,7)] => 1 [(1,7),(2,9),(3,4),(5,10),(6,8)] => 2 [(1,6),(2,9),(3,4),(5,10),(7,8)] => 1 [(1,5),(2,9),(3,4),(6,10),(7,8)] => 2 [(1,4),(2,9),(3,5),(6,10),(7,8)] => 3 [(1,3),(2,9),(4,5),(6,10),(7,8)] => 2 [(1,2),(3,9),(4,5),(6,10),(7,8)] => 1 [(1,2),(3,10),(4,5),(6,9),(7,8)] => 0 [(1,3),(2,10),(4,5),(6,9),(7,8)] => 1 [(1,4),(2,10),(3,5),(6,9),(7,8)] => 2 [(1,5),(2,10),(3,4),(6,9),(7,8)] => 1 [(1,6),(2,10),(3,4),(5,9),(7,8)] => 2 [(1,7),(2,10),(3,4),(5,9),(6,8)] => 3 [(1,8),(2,10),(3,4),(5,9),(6,7)] => 2 [(1,9),(2,10),(3,4),(5,8),(6,7)] => 1 [(1,10),(2,9),(3,4),(5,8),(6,7)] => 0 [(1,10),(2,9),(3,5),(4,8),(6,7)] => 1 [(1,9),(2,10),(3,5),(4,8),(6,7)] => 2 [(1,8),(2,10),(3,5),(4,9),(6,7)] => 3 [(1,7),(2,10),(3,5),(4,9),(6,8)] => 4 [(1,6),(2,10),(3,5),(4,9),(7,8)] => 3 [(1,5),(2,10),(3,6),(4,9),(7,8)] => 2 [(1,4),(2,10),(3,6),(5,9),(7,8)] => 3 [(1,3),(2,10),(4,6),(5,9),(7,8)] => 2 [(1,2),(3,10),(4,6),(5,9),(7,8)] => 1 [(1,2),(3,9),(4,6),(5,10),(7,8)] => 2 [(1,3),(2,9),(4,6),(5,10),(7,8)] => 3 [(1,4),(2,9),(3,6),(5,10),(7,8)] => 2 [(1,5),(2,9),(3,6),(4,10),(7,8)] => 1 [(1,6),(2,9),(3,5),(4,10),(7,8)] => 2 [(1,7),(2,9),(3,5),(4,10),(6,8)] => 3 [(1,8),(2,9),(3,5),(4,10),(6,7)] => 2 [(1,9),(2,8),(3,5),(4,10),(6,7)] => 3 [(1,10),(2,8),(3,5),(4,9),(6,7)] => 2 [(1,10),(2,7),(3,5),(4,9),(6,8)] => 3 [(1,9),(2,7),(3,5),(4,10),(6,8)] => 4 [(1,8),(2,7),(3,5),(4,10),(6,9)] => 3 [(1,7),(2,8),(3,5),(4,10),(6,9)] => 2 [(1,6),(2,8),(3,5),(4,10),(7,9)] => 3 [(1,5),(2,8),(3,6),(4,10),(7,9)] => 2 [(1,4),(2,8),(3,6),(5,10),(7,9)] => 3 [(1,3),(2,8),(4,6),(5,10),(7,9)] => 4 [(1,2),(3,8),(4,6),(5,10),(7,9)] => 3 [(1,2),(3,7),(4,6),(5,10),(8,9)] => 2 [(1,3),(2,7),(4,6),(5,10),(8,9)] => 3 [(1,4),(2,7),(3,6),(5,10),(8,9)] => 2 [(1,5),(2,7),(3,6),(4,10),(8,9)] => 1 [(1,6),(2,7),(3,5),(4,10),(8,9)] => 2 [(1,7),(2,6),(3,5),(4,10),(8,9)] => 3 [(1,8),(2,6),(3,5),(4,10),(7,9)] => 4 [(1,9),(2,6),(3,5),(4,10),(7,8)] => 3 [(1,10),(2,6),(3,5),(4,9),(7,8)] => 2 [(1,10),(2,5),(3,6),(4,9),(7,8)] => 1 [(1,9),(2,5),(3,6),(4,10),(7,8)] => 2 [(1,8),(2,5),(3,6),(4,10),(7,9)] => 3 [(1,7),(2,5),(3,6),(4,10),(8,9)] => 2 [(1,6),(2,5),(3,7),(4,10),(8,9)] => 1 [(1,5),(2,6),(3,7),(4,10),(8,9)] => 2 [(1,4),(2,6),(3,7),(5,10),(8,9)] => 1 [(1,3),(2,6),(4,7),(5,10),(8,9)] => 2 [(1,2),(3,6),(4,7),(5,10),(8,9)] => 1 [(1,2),(3,5),(4,7),(6,10),(8,9)] => 2 [(1,3),(2,5),(4,7),(6,10),(8,9)] => 3 [(1,4),(2,5),(3,7),(6,10),(8,9)] => 2 [(1,5),(2,4),(3,7),(6,10),(8,9)] => 3 [(1,6),(2,4),(3,7),(5,10),(8,9)] => 2 [(1,7),(2,4),(3,6),(5,10),(8,9)] => 3 [(1,8),(2,4),(3,6),(5,10),(7,9)] => 4 [(1,9),(2,4),(3,6),(5,10),(7,8)] => 3 [(1,10),(2,4),(3,6),(5,9),(7,8)] => 2 [(1,10),(2,3),(4,6),(5,9),(7,8)] => 1 [(1,9),(2,3),(4,6),(5,10),(7,8)] => 2 [(1,8),(2,3),(4,6),(5,10),(7,9)] => 3 [(1,7),(2,3),(4,6),(5,10),(8,9)] => 2 [(1,6),(2,3),(4,7),(5,10),(8,9)] => 1 [(1,5),(2,3),(4,7),(6,10),(8,9)] => 2 [(1,4),(2,3),(5,7),(6,10),(8,9)] => 1 [(1,3),(2,4),(5,7),(6,10),(8,9)] => 2 [(1,2),(3,4),(5,7),(6,10),(8,9)] => 1 [(1,2),(3,4),(5,8),(6,10),(7,9)] => 2 [(1,3),(2,4),(5,8),(6,10),(7,9)] => 3 [(1,4),(2,3),(5,8),(6,10),(7,9)] => 2 [(1,5),(2,3),(4,8),(6,10),(7,9)] => 3 [(1,6),(2,3),(4,8),(5,10),(7,9)] => 2 [(1,7),(2,3),(4,8),(5,10),(6,9)] => 1 [(1,8),(2,3),(4,7),(5,10),(6,9)] => 2 [(1,9),(2,3),(4,7),(5,10),(6,8)] => 3 [(1,10),(2,3),(4,7),(5,9),(6,8)] => 2 [(1,10),(2,4),(3,7),(5,9),(6,8)] => 3 [(1,9),(2,4),(3,7),(5,10),(6,8)] => 4 [(1,8),(2,4),(3,7),(5,10),(6,9)] => 3 [(1,7),(2,4),(3,8),(5,10),(6,9)] => 2 [(1,6),(2,4),(3,8),(5,10),(7,9)] => 3 [(1,5),(2,4),(3,8),(6,10),(7,9)] => 4 [(1,4),(2,5),(3,8),(6,10),(7,9)] => 3 [(1,3),(2,5),(4,8),(6,10),(7,9)] => 4 [(1,2),(3,5),(4,8),(6,10),(7,9)] => 3 [(1,2),(3,6),(4,8),(5,10),(7,9)] => 2 [(1,3),(2,6),(4,8),(5,10),(7,9)] => 3 [(1,4),(2,6),(3,8),(5,10),(7,9)] => 2 [(1,5),(2,6),(3,8),(4,10),(7,9)] => 3 [(1,6),(2,5),(3,8),(4,10),(7,9)] => 2 [(1,7),(2,5),(3,8),(4,10),(6,9)] => 3 [(1,8),(2,5),(3,7),(4,10),(6,9)] => 2 [(1,9),(2,5),(3,7),(4,10),(6,8)] => 3 [(1,10),(2,5),(3,7),(4,9),(6,8)] => 2 [(1,10),(2,6),(3,7),(4,9),(5,8)] => 1 [(1,9),(2,6),(3,7),(4,10),(5,8)] => 2 [(1,8),(2,6),(3,7),(4,10),(5,9)] => 3 [(1,7),(2,6),(3,8),(4,10),(5,9)] => 2 [(1,6),(2,7),(3,8),(4,10),(5,9)] => 3 [(1,5),(2,7),(3,8),(4,10),(6,9)] => 2 [(1,4),(2,7),(3,8),(5,10),(6,9)] => 1 [(1,3),(2,7),(4,8),(5,10),(6,9)] => 2 [(1,2),(3,7),(4,8),(5,10),(6,9)] => 1 [(1,2),(3,8),(4,7),(5,10),(6,9)] => 2 [(1,3),(2,8),(4,7),(5,10),(6,9)] => 3 [(1,4),(2,8),(3,7),(5,10),(6,9)] => 2 [(1,5),(2,8),(3,7),(4,10),(6,9)] => 3 [(1,6),(2,8),(3,7),(4,10),(5,9)] => 2 [(1,7),(2,8),(3,6),(4,10),(5,9)] => 3 [(1,8),(2,7),(3,6),(4,10),(5,9)] => 2 [(1,9),(2,7),(3,6),(4,10),(5,8)] => 3 [(1,10),(2,7),(3,6),(4,9),(5,8)] => 2 [(1,10),(2,8),(3,6),(4,9),(5,7)] => 3 [(1,9),(2,8),(3,6),(4,10),(5,7)] => 4 [(1,8),(2,9),(3,6),(4,10),(5,7)] => 3 [(1,7),(2,9),(3,6),(4,10),(5,8)] => 2 [(1,6),(2,9),(3,7),(4,10),(5,8)] => 3 [(1,5),(2,9),(3,7),(4,10),(6,8)] => 2 [(1,4),(2,9),(3,7),(5,10),(6,8)] => 3 [(1,3),(2,9),(4,7),(5,10),(6,8)] => 4 [(1,2),(3,9),(4,7),(5,10),(6,8)] => 3 [(1,2),(3,10),(4,7),(5,9),(6,8)] => 2 [(1,3),(2,10),(4,7),(5,9),(6,8)] => 3 [(1,4),(2,10),(3,7),(5,9),(6,8)] => 4 [(1,5),(2,10),(3,7),(4,9),(6,8)] => 3 [(1,6),(2,10),(3,7),(4,9),(5,8)] => 2 [(1,7),(2,10),(3,6),(4,9),(5,8)] => 3 [(1,8),(2,10),(3,6),(4,9),(5,7)] => 4 [(1,9),(2,10),(3,6),(4,8),(5,7)] => 3 [(1,10),(2,9),(3,6),(4,8),(5,7)] => 2 [(1,10),(2,9),(3,7),(4,8),(5,6)] => 1 [(1,9),(2,10),(3,7),(4,8),(5,6)] => 2 [(1,8),(2,10),(3,7),(4,9),(5,6)] => 3 [(1,7),(2,10),(3,8),(4,9),(5,6)] => 2 [(1,6),(2,10),(3,8),(4,9),(5,7)] => 3 [(1,5),(2,10),(3,8),(4,9),(6,7)] => 2 [(1,4),(2,10),(3,8),(5,9),(6,7)] => 3 [(1,3),(2,10),(4,8),(5,9),(6,7)] => 2 [(1,2),(3,10),(4,8),(5,9),(6,7)] => 1 [(1,2),(3,9),(4,8),(5,10),(6,7)] => 2 [(1,3),(2,9),(4,8),(5,10),(6,7)] => 3 [(1,4),(2,9),(3,8),(5,10),(6,7)] => 2 [(1,5),(2,9),(3,8),(4,10),(6,7)] => 1 [(1,6),(2,9),(3,8),(4,10),(5,7)] => 2 [(1,7),(2,9),(3,8),(4,10),(5,6)] => 1 [(1,8),(2,9),(3,7),(4,10),(5,6)] => 2 [(1,9),(2,8),(3,7),(4,10),(5,6)] => 3 [(1,10),(2,8),(3,7),(4,9),(5,6)] => 2 [(1,10),(2,7),(3,8),(4,9),(5,6)] => 1 [(1,9),(2,7),(3,8),(4,10),(5,6)] => 2 [(1,8),(2,7),(3,9),(4,10),(5,6)] => 1 [(1,7),(2,8),(3,9),(4,10),(5,6)] => 2 [(1,6),(2,8),(3,9),(4,10),(5,7)] => 3 [(1,5),(2,8),(3,9),(4,10),(6,7)] => 2 [(1,4),(2,8),(3,9),(5,10),(6,7)] => 1 [(1,3),(2,8),(4,9),(5,10),(6,7)] => 2 [(1,2),(3,8),(4,9),(5,10),(6,7)] => 1 [(1,2),(3,7),(4,9),(5,10),(6,8)] => 2 [(1,3),(2,7),(4,9),(5,10),(6,8)] => 3 [(1,4),(2,7),(3,9),(5,10),(6,8)] => 2 [(1,5),(2,7),(3,9),(4,10),(6,8)] => 3 [(1,6),(2,7),(3,9),(4,10),(5,8)] => 2 [(1,7),(2,6),(3,9),(4,10),(5,8)] => 3 [(1,8),(2,6),(3,9),(4,10),(5,7)] => 2 [(1,9),(2,6),(3,8),(4,10),(5,7)] => 3 [(1,10),(2,6),(3,8),(4,9),(5,7)] => 2 [(1,10),(2,5),(3,8),(4,9),(6,7)] => 1 [(1,9),(2,5),(3,8),(4,10),(6,7)] => 2 [(1,8),(2,5),(3,9),(4,10),(6,7)] => 1 [(1,7),(2,5),(3,9),(4,10),(6,8)] => 2 [(1,6),(2,5),(3,9),(4,10),(7,8)] => 1 [(1,5),(2,6),(3,9),(4,10),(7,8)] => 2 [(1,4),(2,6),(3,9),(5,10),(7,8)] => 1 [(1,3),(2,6),(4,9),(5,10),(7,8)] => 2 [(1,2),(3,6),(4,9),(5,10),(7,8)] => 1 [(1,2),(3,5),(4,9),(6,10),(7,8)] => 2 [(1,3),(2,5),(4,9),(6,10),(7,8)] => 3 [(1,4),(2,5),(3,9),(6,10),(7,8)] => 2 [(1,5),(2,4),(3,9),(6,10),(7,8)] => 3 [(1,6),(2,4),(3,9),(5,10),(7,8)] => 2 [(1,7),(2,4),(3,9),(5,10),(6,8)] => 3 [(1,8),(2,4),(3,9),(5,10),(6,7)] => 2 [(1,9),(2,4),(3,8),(5,10),(6,7)] => 3 [(1,10),(2,4),(3,8),(5,9),(6,7)] => 2 [(1,10),(2,3),(4,8),(5,9),(6,7)] => 1 [(1,9),(2,3),(4,8),(5,10),(6,7)] => 2 [(1,8),(2,3),(4,9),(5,10),(6,7)] => 1 [(1,7),(2,3),(4,9),(5,10),(6,8)] => 2 [(1,6),(2,3),(4,9),(5,10),(7,8)] => 1 [(1,5),(2,3),(4,9),(6,10),(7,8)] => 2 [(1,4),(2,3),(5,9),(6,10),(7,8)] => 1 [(1,3),(2,4),(5,9),(6,10),(7,8)] => 2 [(1,2),(3,4),(5,9),(6,10),(7,8)] => 1 [(1,2),(3,4),(5,10),(6,9),(7,8)] => 0 [(1,3),(2,4),(5,10),(6,9),(7,8)] => 1 [(1,4),(2,3),(5,10),(6,9),(7,8)] => 0 [(1,5),(2,3),(4,10),(6,9),(7,8)] => 1 [(1,6),(2,3),(4,10),(5,9),(7,8)] => 2 [(1,7),(2,3),(4,10),(5,9),(6,8)] => 3 [(1,8),(2,3),(4,10),(5,9),(6,7)] => 2 [(1,9),(2,3),(4,10),(5,8),(6,7)] => 1 [(1,10),(2,3),(4,9),(5,8),(6,7)] => 0 [(1,10),(2,4),(3,9),(5,8),(6,7)] => 1 [(1,9),(2,4),(3,10),(5,8),(6,7)] => 2 [(1,8),(2,4),(3,10),(5,9),(6,7)] => 3 [(1,7),(2,4),(3,10),(5,9),(6,8)] => 4 [(1,6),(2,4),(3,10),(5,9),(7,8)] => 3 [(1,5),(2,4),(3,10),(6,9),(7,8)] => 2 [(1,4),(2,5),(3,10),(6,9),(7,8)] => 1 [(1,3),(2,5),(4,10),(6,9),(7,8)] => 2 [(1,2),(3,5),(4,10),(6,9),(7,8)] => 1 [(1,2),(3,6),(4,10),(5,9),(7,8)] => 2 [(1,3),(2,6),(4,10),(5,9),(7,8)] => 3 [(1,4),(2,6),(3,10),(5,9),(7,8)] => 2 [(1,5),(2,6),(3,10),(4,9),(7,8)] => 1 [(1,6),(2,5),(3,10),(4,9),(7,8)] => 2 [(1,7),(2,5),(3,10),(4,9),(6,8)] => 3 [(1,8),(2,5),(3,10),(4,9),(6,7)] => 2 [(1,9),(2,5),(3,10),(4,8),(6,7)] => 3 [(1,10),(2,5),(3,9),(4,8),(6,7)] => 2 [(1,10),(2,6),(3,9),(4,8),(5,7)] => 3 [(1,9),(2,6),(3,10),(4,8),(5,7)] => 4 [(1,8),(2,6),(3,10),(4,9),(5,7)] => 3 [(1,7),(2,6),(3,10),(4,9),(5,8)] => 2 [(1,6),(2,7),(3,10),(4,9),(5,8)] => 1 [(1,5),(2,7),(3,10),(4,9),(6,8)] => 2 [(1,4),(2,7),(3,10),(5,9),(6,8)] => 3 [(1,3),(2,7),(4,10),(5,9),(6,8)] => 4 [(1,2),(3,7),(4,10),(5,9),(6,8)] => 3 [(1,2),(3,8),(4,10),(5,9),(6,7)] => 2 [(1,3),(2,8),(4,10),(5,9),(6,7)] => 3 [(1,4),(2,8),(3,10),(5,9),(6,7)] => 2 [(1,5),(2,8),(3,10),(4,9),(6,7)] => 1 [(1,6),(2,8),(3,10),(4,9),(5,7)] => 2 [(1,7),(2,8),(3,10),(4,9),(5,6)] => 1 [(1,8),(2,7),(3,10),(4,9),(5,6)] => 2 [(1,9),(2,7),(3,10),(4,8),(5,6)] => 3 [(1,10),(2,7),(3,9),(4,8),(5,6)] => 2 [(1,10),(2,8),(3,9),(4,7),(5,6)] => 1 [(1,9),(2,8),(3,10),(4,7),(5,6)] => 2 [(1,8),(2,9),(3,10),(4,7),(5,6)] => 1 [(1,7),(2,9),(3,10),(4,8),(5,6)] => 2 [(1,6),(2,9),(3,10),(4,8),(5,7)] => 3 [(1,5),(2,9),(3,10),(4,8),(6,7)] => 2 [(1,4),(2,9),(3,10),(5,8),(6,7)] => 1 [(1,3),(2,9),(4,10),(5,8),(6,7)] => 2 [(1,2),(3,9),(4,10),(5,8),(6,7)] => 1 [(1,2),(3,10),(4,9),(5,8),(6,7)] => 0 [(1,3),(2,10),(4,9),(5,8),(6,7)] => 1 [(1,4),(2,10),(3,9),(5,8),(6,7)] => 2 [(1,5),(2,10),(3,9),(4,8),(6,7)] => 3 [(1,6),(2,10),(3,9),(4,8),(5,7)] => 4 [(1,7),(2,10),(3,9),(4,8),(5,6)] => 3 [(1,8),(2,10),(3,9),(4,7),(5,6)] => 2 [(1,9),(2,10),(3,8),(4,7),(5,6)] => 1 [(1,10),(2,9),(3,8),(4,7),(5,6)] => 0 [(1,2),(3,4),(5,8),(6,7),(9,10),(11,12)] => 0 [(1,2),(3,4),(5,8),(6,7),(9,12),(10,11)] => 0 [(1,2),(3,4),(5,10),(6,7),(8,9),(11,12)] => 0 [(1,2),(3,4),(5,12),(6,7),(8,9),(10,11)] => 0 [(1,2),(3,4),(5,12),(6,7),(8,11),(9,10)] => 0 [(1,2),(3,4),(5,6),(7,8),(9,10),(11,12)] => 0 [(1,2),(3,4),(5,6),(7,8),(9,12),(10,11)] => 0 [(1,2),(3,4),(5,10),(6,9),(7,8),(11,12)] => 0 [(1,2),(3,4),(5,12),(6,9),(7,8),(10,11)] => 0 [(1,2),(3,4),(5,12),(6,11),(7,8),(9,10)] => 0 [(1,2),(3,4),(5,6),(7,10),(8,9),(11,12)] => 0 [(1,2),(3,4),(5,6),(7,12),(8,9),(10,11)] => 0 [(1,2),(3,4),(5,6),(7,12),(8,11),(9,10)] => 0 [(1,2),(3,4),(5,12),(6,11),(7,10),(8,9)] => 0 [(1,2),(3,4),(5,6),(7,8),(9,11),(10,12)] => 1 [(1,2),(3,4),(5,6),(7,9),(8,10),(11,12)] => 1 [(1,2),(3,4),(5,6),(7,9),(8,11),(10,12)] => 2 [(1,2),(3,4),(5,6),(7,10),(8,11),(9,12)] => 1 [(1,2),(3,4),(5,7),(6,8),(9,10),(11,12)] => 1 [(1,2),(3,4),(5,7),(6,8),(9,11),(10,12)] => 2 [(1,2),(3,4),(5,7),(6,9),(8,10),(11,12)] => 2 [(1,2),(3,4),(5,7),(6,9),(8,11),(10,12)] => 3 [(1,2),(3,4),(5,7),(6,10),(8,11),(9,12)] => 2 [(1,2),(3,4),(5,8),(6,9),(7,10),(11,12)] => 1 [(1,2),(3,4),(5,8),(6,9),(7,11),(10,12)] => 2 [(1,2),(3,4),(5,8),(6,10),(7,11),(9,12)] => 1 [(1,2),(3,4),(5,9),(6,10),(7,11),(8,12)] => 2 [(1,2),(3,5),(4,6),(7,8),(9,10),(11,12)] => 1 [(1,2),(3,5),(4,6),(7,8),(9,11),(10,12)] => 2 [(1,2),(3,5),(4,6),(7,9),(8,10),(11,12)] => 2 [(1,2),(3,5),(4,6),(7,9),(8,11),(10,12)] => 3 [(1,2),(3,5),(4,6),(7,10),(8,11),(9,12)] => 2 [(1,2),(3,5),(4,7),(6,8),(9,10),(11,12)] => 2 [(1,2),(3,5),(4,7),(6,8),(9,11),(10,12)] => 3 [(1,2),(3,5),(4,7),(6,9),(8,10),(11,12)] => 3 [(1,2),(3,5),(4,7),(6,9),(8,11),(10,12)] => 4 [(1,2),(3,5),(4,7),(6,10),(8,11),(9,12)] => 3 [(1,2),(3,4),(5,6),(7,9),(8,12),(10,11)] => 1 [(1,2),(3,4),(5,6),(7,10),(8,12),(9,11)] => 2 [(1,2),(3,4),(5,6),(7,11),(8,9),(10,12)] => 1 [(1,2),(3,4),(5,6),(7,11),(8,10),(9,12)] => 2 [(1,2),(3,4),(5,6),(7,11),(8,12),(9,10)] => 1 [(1,2),(3,4),(5,6),(7,12),(8,10),(9,11)] => 1 [(1,2),(3,4),(5,7),(6,8),(9,12),(10,11)] => 1 [(1,2),(3,4),(5,7),(6,9),(8,12),(10,11)] => 2 [(1,2),(3,4),(5,7),(6,10),(8,9),(11,12)] => 1 [(1,2),(3,4),(5,7),(6,10),(8,12),(9,11)] => 3 [(1,2),(3,4),(5,7),(6,11),(8,9),(10,12)] => 2 [(1,2),(3,4),(5,7),(6,11),(8,10),(9,12)] => 3 [(1,2),(3,4),(5,7),(6,11),(8,12),(9,10)] => 2 [(1,2),(3,4),(5,7),(6,12),(8,9),(10,11)] => 1 [(1,2),(3,4),(5,7),(6,12),(8,10),(9,11)] => 2 [(1,2),(3,4),(5,7),(6,12),(8,11),(9,10)] => 1 [(1,2),(3,4),(5,8),(6,7),(9,11),(10,12)] => 1 [(1,2),(3,4),(5,8),(6,9),(7,12),(10,11)] => 1 [(1,2),(3,4),(5,8),(6,10),(7,12),(9,11)] => 2 [(1,2),(3,4),(5,8),(6,10),(7,9),(11,12)] => 2 [(1,2),(3,4),(5,8),(6,11),(7,12),(9,10)] => 1 [(1,2),(3,4),(5,8),(6,11),(7,10),(9,12)] => 2 [(1,2),(3,4),(5,8),(6,11),(7,9),(10,12)] => 3 [(1,2),(3,4),(5,8),(6,12),(7,11),(9,10)] => 2 [(1,2),(3,4),(5,8),(6,12),(7,10),(9,11)] => 3 [(1,2),(3,4),(5,8),(6,12),(7,9),(10,11)] => 2 [(1,2),(3,4),(5,9),(6,7),(8,10),(11,12)] => 1 [(1,2),(3,4),(5,9),(6,7),(8,11),(10,12)] => 2 [(1,2),(3,4),(5,9),(6,7),(8,12),(10,11)] => 1 [(1,2),(3,4),(5,9),(6,8),(7,12),(10,11)] => 2 [(1,2),(3,4),(5,9),(6,8),(7,11),(10,12)] => 3 [(1,2),(3,4),(5,9),(6,8),(7,10),(11,12)] => 2 [(1,2),(3,4),(5,9),(6,10),(7,12),(8,11)] => 1 [(1,2),(3,4),(5,9),(6,10),(7,8),(11,12)] => 1 [(1,2),(3,4),(5,9),(6,11),(7,12),(8,10)] => 2 [(1,2),(3,4),(5,9),(6,11),(7,10),(8,12)] => 1 [(1,2),(3,4),(5,9),(6,11),(7,8),(10,12)] => 2 [(1,2),(3,4),(5,9),(6,12),(7,11),(8,10)] => 3 [(1,2),(3,4),(5,9),(6,12),(7,10),(8,11)] => 2 [(1,2),(3,4),(5,9),(6,12),(7,8),(10,11)] => 1 [(1,2),(3,4),(5,10),(6,7),(8,11),(9,12)] => 1 [(1,2),(3,4),(5,10),(6,7),(8,12),(9,11)] => 2 [(1,2),(3,4),(5,10),(6,8),(7,12),(9,11)] => 3 [(1,2),(3,4),(5,10),(6,8),(7,11),(9,12)] => 2 [(1,2),(3,4),(5,10),(6,8),(7,9),(11,12)] => 1 [(1,2),(3,4),(5,10),(6,9),(7,12),(8,11)] => 2 [(1,2),(3,4),(5,10),(6,9),(7,11),(8,12)] => 1 [(1,2),(3,4),(5,10),(6,11),(7,12),(8,9)] => 1 [(1,2),(3,4),(5,10),(6,11),(7,9),(8,12)] => 2 [(1,2),(3,4),(5,10),(6,11),(7,8),(9,12)] => 1 [(1,2),(3,4),(5,10),(6,12),(7,11),(8,9)] => 2 [(1,2),(3,4),(5,10),(6,12),(7,9),(8,11)] => 3 [(1,2),(3,4),(5,10),(6,12),(7,8),(9,11)] => 2 [(1,2),(3,4),(5,11),(6,7),(8,9),(10,12)] => 1 [(1,2),(3,4),(5,11),(6,7),(8,10),(9,12)] => 2 [(1,2),(3,4),(5,11),(6,7),(8,12),(9,10)] => 1 [(1,2),(3,4),(5,11),(6,8),(7,12),(9,10)] => 2 [(1,2),(3,4),(5,11),(6,8),(7,10),(9,12)] => 3 [(1,2),(3,4),(5,11),(6,8),(7,9),(10,12)] => 2 [(1,2),(3,4),(5,11),(6,9),(7,12),(8,10)] => 3 [(1,2),(3,4),(5,11),(6,9),(7,10),(8,12)] => 2 [(1,2),(3,4),(5,11),(6,9),(7,8),(10,12)] => 1 [(1,2),(3,4),(5,11),(6,10),(7,12),(8,9)] => 2 [(1,2),(3,4),(5,11),(6,10),(7,9),(8,12)] => 3 [(1,2),(3,4),(5,11),(6,10),(7,8),(9,12)] => 2 [(1,2),(3,4),(5,11),(6,12),(7,10),(8,9)] => 1 [(1,2),(3,4),(5,11),(6,12),(7,9),(8,10)] => 2 [(1,2),(3,4),(5,11),(6,12),(7,8),(9,10)] => 1 [(1,2),(3,4),(5,12),(6,7),(8,10),(9,11)] => 1 [(1,2),(3,4),(5,12),(6,8),(7,11),(9,10)] => 1 [(1,2),(3,4),(5,12),(6,8),(7,10),(9,11)] => 2 [(1,2),(3,4),(5,12),(6,8),(7,9),(10,11)] => 1 [(1,2),(3,4),(5,12),(6,9),(7,11),(8,10)] => 2 [(1,2),(3,4),(5,12),(6,9),(7,10),(8,11)] => 1 [(1,2),(3,4),(5,12),(6,10),(7,11),(8,9)] => 1 [(1,2),(3,4),(5,12),(6,10),(7,9),(8,11)] => 2 [(1,2),(3,4),(5,12),(6,10),(7,8),(9,11)] => 1 [(1,2),(3,4),(5,12),(6,11),(7,9),(8,10)] => 1 [(1,2),(3,5),(4,6),(7,8),(9,12),(10,11)] => 1 [(1,2),(3,5),(4,6),(7,9),(8,12),(10,11)] => 2 [(1,2),(3,5),(4,6),(7,10),(8,9),(11,12)] => 1 [(1,2),(3,5),(4,6),(7,10),(8,12),(9,11)] => 3 [(1,2),(3,5),(4,6),(7,11),(8,9),(10,12)] => 2 [(1,2),(3,5),(4,6),(7,11),(8,10),(9,12)] => 3 [(1,2),(3,5),(4,6),(7,11),(8,12),(9,10)] => 2 [(1,2),(3,5),(4,6),(7,12),(8,9),(10,11)] => 1 [(1,2),(3,5),(4,6),(7,12),(8,10),(9,11)] => 2 [(1,2),(3,5),(4,6),(7,12),(8,11),(9,10)] => 1 [(1,2),(3,5),(4,7),(6,8),(9,12),(10,11)] => 2 [(1,2),(3,5),(4,7),(6,9),(8,12),(10,11)] => 3 [(1,2),(3,5),(4,7),(6,10),(8,9),(11,12)] => 2 [(1,2),(3,5),(4,7),(6,10),(8,12),(9,11)] => 4 [(1,2),(3,5),(4,7),(6,11),(8,9),(10,12)] => 3 [(1,2),(3,5),(4,7),(6,11),(8,10),(9,12)] => 4 ----------------------------------------------------------------------------- Created: Apr 20, 2017 at 21:16 by Martin Rubey ----------------------------------------------------------------------------- Last Updated: Apr 20, 2017 at 21:16 by Martin Rubey