Identifier
- St000852: Finite Cartan types ⟶ ℤ
Values
=>
Cc0022;cc-rep
['A',1]=>3
['A',2]=>12
['B',2]=>15
['G',2]=>21
['A',3]=>55
['B',3]=>84
['C',3]=>84
['A',4]=>273
['B',4]=>495
['C',4]=>495
['D',4]=>336
['F',4]=>780
['A',5]=>1428
['B',5]=>3003
['C',5]=>3003
['D',5]=>2079
['A',6]=>7752
['B',6]=>18564
['C',6]=>18564
['D',6]=>13013
['E',6]=>16588
['A',7]=>43263
['B',7]=>116280
['C',7]=>116280
['D',7]=>82212
['E',7]=>144210
['A',8]=>246675
['B',8]=>735471
['C',8]=>735471
['D',8]=>523260
['E',8]=>1520922
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The second Fuss-Catalan number of a finite Cartan type.
The Fuss-Catalan numbers of a finite Cartan type are given by
$$\frac{1}{|W|}\prod (d_i+mh) = \prod \frac{d_i+mh}{d_i}$$
where the products run over all degrees of homoneneous fundamenal invariants of the Weyl group of a Cartan type.
The Fuss-Catalan numbers of a finite Cartan type are given by
$$\frac{1}{|W|}\prod (d_i+mh) = \prod \frac{d_i+mh}{d_i}$$
where the products run over all degrees of homoneneous fundamenal invariants of the Weyl group of a Cartan type.
Code
def statistic(cartan_type): W = ReflectionGroup(cartan_type) return W.fuss_catalan_number(m=2)
Created
Jun 25, 2017 at 10:10 by Christian Stump
Updated
Nov 21, 2017 at 09:31 by Christian Stump
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!