***************************************************************************** * www.FindStat.org - The Combinatorial Statistic Finder * * * * Copyright (C) 2019 The FindStatCrew * * * * This information is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. * ***************************************************************************** ----------------------------------------------------------------------------- Statistic identifier: St000855 ----------------------------------------------------------------------------- Collection: Finite Cartan types ----------------------------------------------------------------------------- Description: The number of full-support reflections in the Weyl group of a finite Cartan type. A reflection has full support if any (or all) reduced words for it in simple reflections use all simple reflections. This number is given by $\frac{nh}{|W|}d_1^*\cdots d_{n-1}^*$ where $n$ is the rank, $h$ is the Coxeter number, $W$ is the Weyl group, and $d_1^* \geq \ldots \geq d_{n-1}^* \geq d_n^* = 0$ are the codegrees of the Weyl group of a Cartan type. ----------------------------------------------------------------------------- References: [1] Chapoton, F. Sur le nombre de réflexions pleines dans les groupes de Coxeter finis [[MathSciNet:2300616]] ----------------------------------------------------------------------------- Code: def statistic(cartan_type): W = ReflectionGroup(cartan_type) return W.number_of_reflections_of_full_support() ----------------------------------------------------------------------------- Statistic values: ['A',1] => 1 ['A',2] => 1 ['B',2] => 2 ['G',2] => 4 ['A',3] => 1 ['B',3] => 3 ['C',3] => 3 ['A',4] => 1 ['B',4] => 4 ['C',4] => 4 ['D',4] => 2 ['F',4] => 10 ['A',5] => 1 ['B',5] => 5 ['C',5] => 5 ['D',5] => 3 ['A',6] => 1 ['B',6] => 6 ['C',6] => 6 ['D',6] => 4 ['E',6] => 7 ['A',7] => 1 ['B',7] => 7 ['C',7] => 7 ['D',7] => 5 ['E',7] => 16 ['A',8] => 1 ['B',8] => 8 ['C',8] => 8 ['D',8] => 6 ['E',8] => 44 ----------------------------------------------------------------------------- Created: Jun 25, 2017 at 10:30 by Christian Stump ----------------------------------------------------------------------------- Last Updated: Apr 19, 2018 at 09:17 by Christian Stump