edit this statistic or download as text // json
Identifier
Values
=>
Cc0022;cc-rep
['A',1]=>1 ['A',2]=>2 ['B',2]=>2 ['G',2]=>2 ['A',3]=>6 ['B',3]=>8 ['C',3]=>8 ['A',4]=>24 ['B',4]=>48 ['C',4]=>48 ['D',4]=>32 ['F',4]=>96 ['A',5]=>120 ['B',5]=>384 ['C',5]=>384 ['D',5]=>240 ['A',6]=>720 ['B',6]=>3840 ['C',6]=>3840 ['D',6]=>2304 ['E',6]=>4320 ['A',7]=>5040 ['B',7]=>46080 ['C',7]=>46080 ['D',7]=>26880 ['E',7]=>161280 ['A',8]=>40320 ['B',8]=>645120
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The number of Coxeter elements in the Weyl group of a finite Cartan type.
This is, the elements that are conjugate to the product of the simple generators in any order, or, equivalently, the elements that admit a primitive $h$-th root of unity as an eigenvalue where $h$ is the Coxeter number.
References
[1] Reiner, V., Ripoll, V., Stump, C. On non-conjugate Coxeter elements in well-generated reflection groups MathSciNet:3623739
Code
def statistic(cartan_type):
    W = ReflectionGroup(cartan_type)
    return len(W.coxeter_elements())

Created
Jun 25, 2017 at 20:14 by Christian Stump
Updated
Jun 26, 2017 at 08:34 by Christian Stump