edit this statistic or download as text // json
Identifier
Values
=>
Cc0005;cc-rep
[1,0]=>1 [1,0,1,0]=>2 [1,1,0,0]=>1 [1,0,1,0,1,0]=>3 [1,0,1,1,0,0]=>2 [1,1,0,0,1,0]=>2 [1,1,0,1,0,0]=>1 [1,1,1,0,0,0]=>1 [1,0,1,0,1,0,1,0]=>4 [1,0,1,0,1,1,0,0]=>3 [1,0,1,1,0,0,1,0]=>2 [1,0,1,1,0,1,0,0]=>1 [1,0,1,1,1,0,0,0]=>2 [1,1,0,0,1,0,1,0]=>3 [1,1,0,0,1,1,0,0]=>2 [1,1,0,1,0,0,1,0]=>1 [1,1,0,1,0,1,0,0]=>3 [1,1,0,1,1,0,0,0]=>1 [1,1,1,0,0,0,1,0]=>2 [1,1,1,0,0,1,0,0]=>1 [1,1,1,0,1,0,0,0]=>1 [1,1,1,1,0,0,0,0]=>1 [1,0,1,0,1,0,1,0,1,0]=>5 [1,0,1,0,1,0,1,1,0,0]=>4 [1,0,1,0,1,1,0,0,1,0]=>3 [1,0,1,0,1,1,0,1,0,0]=>1 [1,0,1,0,1,1,1,0,0,0]=>3 [1,0,1,1,0,0,1,0,1,0]=>3 [1,0,1,1,0,0,1,1,0,0]=>2 [1,0,1,1,0,1,0,0,1,0]=>1 [1,0,1,1,0,1,0,1,0,0]=>4 [1,0,1,1,0,1,1,0,0,0]=>1 [1,0,1,1,1,0,0,0,1,0]=>2 [1,0,1,1,1,0,0,1,0,0]=>1 [1,0,1,1,1,0,1,0,0,0]=>1 [1,0,1,1,1,1,0,0,0,0]=>2 [1,1,0,0,1,0,1,0,1,0]=>4 [1,1,0,0,1,0,1,1,0,0]=>3 [1,1,0,0,1,1,0,0,1,0]=>2 [1,1,0,0,1,1,0,1,0,0]=>1 [1,1,0,0,1,1,1,0,0,0]=>2 [1,1,0,1,0,0,1,0,1,0]=>1 [1,1,0,1,0,0,1,1,0,0]=>1 [1,1,0,1,0,1,0,0,1,0]=>4 [1,1,0,1,0,1,0,1,0,0]=>3 [1,1,0,1,0,1,1,0,0,0]=>3 [1,1,0,1,1,0,0,0,1,0]=>1 [1,1,0,1,1,0,0,1,0,0]=>1 [1,1,0,1,1,0,1,0,0,0]=>1 [1,1,0,1,1,1,0,0,0,0]=>1 [1,1,1,0,0,0,1,0,1,0]=>3 [1,1,1,0,0,0,1,1,0,0]=>2 [1,1,1,0,0,1,0,0,1,0]=>1 [1,1,1,0,0,1,0,1,0,0]=>3 [1,1,1,0,0,1,1,0,0,0]=>1 [1,1,1,0,1,0,0,0,1,0]=>1 [1,1,1,0,1,0,0,1,0,0]=>1 [1,1,1,0,1,0,1,0,0,0]=>1 [1,1,1,0,1,1,0,0,0,0]=>1 [1,1,1,1,0,0,0,0,1,0]=>2 [1,1,1,1,0,0,0,1,0,0]=>1 [1,1,1,1,0,0,1,0,0,0]=>1 [1,1,1,1,0,1,0,0,0,0]=>1 [1,1,1,1,1,0,0,0,0,0]=>1 [1,0,1,0,1,0,1,0,1,0,1,0]=>6 [1,0,1,0,1,0,1,0,1,1,0,0]=>5 [1,0,1,0,1,0,1,1,0,0,1,0]=>4 [1,0,1,0,1,0,1,1,0,1,0,0]=>1 [1,0,1,0,1,0,1,1,1,0,0,0]=>4 [1,0,1,0,1,1,0,0,1,0,1,0]=>3 [1,0,1,0,1,1,0,0,1,1,0,0]=>3 [1,0,1,0,1,1,0,1,0,0,1,0]=>1 [1,0,1,0,1,1,0,1,0,1,0,0]=>5 [1,0,1,0,1,1,0,1,1,0,0,0]=>1 [1,0,1,0,1,1,1,0,0,0,1,0]=>3 [1,0,1,0,1,1,1,0,0,1,0,0]=>1 [1,0,1,0,1,1,1,0,1,0,0,0]=>1 [1,0,1,0,1,1,1,1,0,0,0,0]=>3 [1,0,1,1,0,0,1,0,1,0,1,0]=>4 [1,0,1,1,0,0,1,0,1,1,0,0]=>3 [1,0,1,1,0,0,1,1,0,0,1,0]=>2 [1,0,1,1,0,0,1,1,0,1,0,0]=>1 [1,0,1,1,0,0,1,1,1,0,0,0]=>2 [1,0,1,1,0,1,0,0,1,0,1,0]=>1 [1,0,1,1,0,1,0,0,1,1,0,0]=>1 [1,0,1,1,0,1,0,1,0,0,1,0]=>5 [1,0,1,1,0,1,0,1,0,1,0,0]=>4 [1,0,1,1,0,1,0,1,1,0,0,0]=>4 [1,0,1,1,0,1,1,0,0,0,1,0]=>1 [1,0,1,1,0,1,1,0,0,1,0,0]=>1 [1,0,1,1,0,1,1,0,1,0,0,0]=>1 [1,0,1,1,0,1,1,1,0,0,0,0]=>1 [1,0,1,1,1,0,0,0,1,0,1,0]=>3 [1,0,1,1,1,0,0,0,1,1,0,0]=>2 [1,0,1,1,1,0,0,1,0,0,1,0]=>1 [1,0,1,1,1,0,0,1,0,1,0,0]=>3 [1,0,1,1,1,0,0,1,1,0,0,0]=>1 [1,0,1,1,1,0,1,0,0,0,1,0]=>1 [1,0,1,1,1,0,1,0,0,1,0,0]=>1 [1,0,1,1,1,0,1,0,1,0,0,0]=>1 [1,0,1,1,1,0,1,1,0,0,0,0]=>1 [1,0,1,1,1,1,0,0,0,0,1,0]=>2 [1,0,1,1,1,1,0,0,0,1,0,0]=>1 [1,0,1,1,1,1,0,0,1,0,0,0]=>1 [1,0,1,1,1,1,0,1,0,0,0,0]=>1 [1,0,1,1,1,1,1,0,0,0,0,0]=>2 [1,1,0,0,1,0,1,0,1,0,1,0]=>5 [1,1,0,0,1,0,1,0,1,1,0,0]=>4 [1,1,0,0,1,0,1,1,0,0,1,0]=>3 [1,1,0,0,1,0,1,1,0,1,0,0]=>1 [1,1,0,0,1,0,1,1,1,0,0,0]=>3 [1,1,0,0,1,1,0,0,1,0,1,0]=>3 [1,1,0,0,1,1,0,0,1,1,0,0]=>2 [1,1,0,0,1,1,0,1,0,0,1,0]=>1 [1,1,0,0,1,1,0,1,0,1,0,0]=>4 [1,1,0,0,1,1,0,1,1,0,0,0]=>1 [1,1,0,0,1,1,1,0,0,0,1,0]=>2 [1,1,0,0,1,1,1,0,0,1,0,0]=>1 [1,1,0,0,1,1,1,0,1,0,0,0]=>1 [1,1,0,0,1,1,1,1,0,0,0,0]=>2 [1,1,0,1,0,0,1,0,1,0,1,0]=>1 [1,1,0,1,0,0,1,0,1,1,0,0]=>1 [1,1,0,1,0,0,1,1,0,0,1,0]=>1 [1,1,0,1,0,0,1,1,0,1,0,0]=>1 [1,1,0,1,0,0,1,1,1,0,0,0]=>1 [1,1,0,1,0,1,0,0,1,0,1,0]=>5 [1,1,0,1,0,1,0,0,1,1,0,0]=>4 [1,1,0,1,0,1,0,1,0,0,1,0]=>4 [1,1,0,1,0,1,0,1,0,1,0,0]=>3 [1,1,0,1,0,1,0,1,1,0,0,0]=>3 [1,1,0,1,0,1,1,0,0,0,1,0]=>3 [1,1,0,1,0,1,1,0,0,1,0,0]=>1 [1,1,0,1,0,1,1,0,1,0,0,0]=>1 [1,1,0,1,0,1,1,1,0,0,0,0]=>3 [1,1,0,1,1,0,0,0,1,0,1,0]=>1 [1,1,0,1,1,0,0,0,1,1,0,0]=>1 [1,1,0,1,1,0,0,1,0,0,1,0]=>1 [1,1,0,1,1,0,0,1,0,1,0,0]=>1 [1,1,0,1,1,0,0,1,1,0,0,0]=>1 [1,1,0,1,1,0,1,0,0,0,1,0]=>1 [1,1,0,1,1,0,1,0,0,1,0,0]=>4 [1,1,0,1,1,0,1,0,1,0,0,0]=>1 [1,1,0,1,1,0,1,1,0,0,0,0]=>1 [1,1,0,1,1,1,0,0,0,0,1,0]=>1 [1,1,0,1,1,1,0,0,0,1,0,0]=>1 [1,1,0,1,1,1,0,0,1,0,0,0]=>1 [1,1,0,1,1,1,0,1,0,0,0,0]=>1 [1,1,0,1,1,1,1,0,0,0,0,0]=>1 [1,1,1,0,0,0,1,0,1,0,1,0]=>4 [1,1,1,0,0,0,1,0,1,1,0,0]=>3 [1,1,1,0,0,0,1,1,0,0,1,0]=>2 [1,1,1,0,0,0,1,1,0,1,0,0]=>1 [1,1,1,0,0,0,1,1,1,0,0,0]=>2 [1,1,1,0,0,1,0,0,1,0,1,0]=>1 [1,1,1,0,0,1,0,0,1,1,0,0]=>1 [1,1,1,0,0,1,0,1,0,0,1,0]=>4 [1,1,1,0,0,1,0,1,0,1,0,0]=>3 [1,1,1,0,0,1,0,1,1,0,0,0]=>3 [1,1,1,0,0,1,1,0,0,0,1,0]=>1 [1,1,1,0,0,1,1,0,0,1,0,0]=>1 [1,1,1,0,0,1,1,0,1,0,0,0]=>1 [1,1,1,0,0,1,1,1,0,0,0,0]=>1 [1,1,1,0,1,0,0,0,1,0,1,0]=>1 [1,1,1,0,1,0,0,0,1,1,0,0]=>1 [1,1,1,0,1,0,0,1,0,0,1,0]=>1 [1,1,1,0,1,0,0,1,0,1,0,0]=>1 [1,1,1,0,1,0,0,1,1,0,0,0]=>1 [1,1,1,0,1,0,1,0,0,0,1,0]=>1 [1,1,1,0,1,0,1,0,0,1,0,0]=>1 [1,1,1,0,1,0,1,0,1,0,0,0]=>3 [1,1,1,0,1,0,1,1,0,0,0,0]=>1 [1,1,1,0,1,1,0,0,0,0,1,0]=>1 [1,1,1,0,1,1,0,0,0,1,0,0]=>1 [1,1,1,0,1,1,0,0,1,0,0,0]=>1 [1,1,1,0,1,1,0,1,0,0,0,0]=>1 [1,1,1,0,1,1,1,0,0,0,0,0]=>1 [1,1,1,1,0,0,0,0,1,0,1,0]=>3 [1,1,1,1,0,0,0,0,1,1,0,0]=>2 [1,1,1,1,0,0,0,1,0,0,1,0]=>1 [1,1,1,1,0,0,0,1,0,1,0,0]=>3 [1,1,1,1,0,0,0,1,1,0,0,0]=>1 [1,1,1,1,0,0,1,0,0,0,1,0]=>1 [1,1,1,1,0,0,1,0,0,1,0,0]=>1 [1,1,1,1,0,0,1,0,1,0,0,0]=>1 [1,1,1,1,0,0,1,1,0,0,0,0]=>1 [1,1,1,1,0,1,0,0,0,0,1,0]=>1 [1,1,1,1,0,1,0,0,0,1,0,0]=>1 [1,1,1,1,0,1,0,0,1,0,0,0]=>1 [1,1,1,1,0,1,0,1,0,0,0,0]=>1 [1,1,1,1,0,1,1,0,0,0,0,0]=>1 [1,1,1,1,1,0,0,0,0,0,1,0]=>2 [1,1,1,1,1,0,0,0,0,1,0,0]=>1 [1,1,1,1,1,0,0,0,1,0,0,0]=>1 [1,1,1,1,1,0,0,1,0,0,0,0]=>1 [1,1,1,1,1,0,1,0,0,0,0,0]=>1 [1,1,1,1,1,1,0,0,0,0,0,0]=>1
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The k-Gorenstein degree of the corresponding Nakayama algebra with linear quiver.
The $k$-Gorenstein degree is the maximal number $k$ such that the algebra is $k$-Gorenstein. We apply the convention that the value is equal to the global dimension of the algebra in case the $k$-Gorenstein degree is greater than or equal to the global dimension.
References
[1] Auslander, M., Reiten, I. $k$-Gorenstein algebras and syzygy modules MathSciNet:1259667
Code
DeclareOperation("kGortestgiven",[IsList]);

InstallMethod(kGortestgiven, "for a representation of a quiver", [IsList],0,function(LIST)

local M, n, f, N, i, h;

M:=LIST[1];
g:=LIST[2]-1;
A:=NakayamaAlgebra(M,GF(3));
injA:=IndecInjectiveModules(A);CoRegA:=DirectSumOfQPAModules(injA);
temp:=[];for i in [1..g] do Append(temp,[Source(ProjectiveCover(NthSyzygy(CoRegA,i)))]);od;
temp2:=[];for i in [1..g] do Append(temp2,[i-InjDimensionOfModule(Source(ProjectiveCover(NthSyzygy(CoRegA,i))),30)]);od;
t:=Minimum(temp2);
return(t);
end);

#testet ob algebra g-Gorenstein ist, wenn sie QF-3 ist (bei nakayama automatisch).









DeclareOperation("kGortestgivenhelp",[IsList]);

InstallMethod(kGortestgivenhelp, "for a representation of a quiver", [IsList],0,function(LIST)

local M, n, f, N, i, h;

M:=LIST[1];
g:=LIST[2]-1;
A:=NakayamaAlgebra(M,GF(3));
injA:=IndecInjectiveModules(A);CoRegA:=DirectSumOfQPAModules(injA);
temp:=[];for i in [1..g] do Append(temp,[Source(ProjectiveCover(NthSyzygy(CoRegA,i)))]);od;
temp2:=[];for i in [1..g] do Append(temp2,[i-InjDimensionOfModule(Source(ProjectiveCover(NthSyzygy(CoRegA,i))),30)]);od;
t:=Minimum(temp2);
if (t>=0) then
return(1);
else return(0); fi;
end);


DeclareOperation("kGordegree",[IsList]);

InstallMethod(kGordegree, "for a representation of a quiver", [IsList],0,function(LIST)

local M, n, f, N, i, h;

M:=LIST[1];
A:=NakayamaAlgebra(M,GF(3));
gg:=GlobalDimensionOfAlgebra(A,30);
temp5:=[];
for i in [2..gg] do Append(temp5,[kGortestgivenhelp([M,i])]);od;
tt:=Sum(temp5)+1;
return(tt);
end);








Created
Aug 09, 2017 at 11:38 by Rene Marczinzik
Updated
Aug 09, 2017 at 15:04 by Martin Rubey