Identifier
- St000937: Integer partitions ⟶ ℤ
Values
=>
Cc0002;cc-rep
[2]=>2
[1,1]=>1
[3]=>3
[2,1]=>1
[1,1,1]=>2
[4]=>5
[3,1]=>2
[2,2]=>2
[2,1,1]=>2
[1,1,1,1]=>3
[5]=>7
[4,1]=>3
[3,2]=>4
[3,1,1]=>2
[2,2,1]=>3
[2,1,1,1]=>3
[1,1,1,1,1]=>4
[6]=>11
[5,1]=>5
[4,2]=>5
[4,1,1]=>5
[3,3]=>5
[3,2,1]=>2
[3,1,1,1]=>5
[2,2,2]=>5
[2,2,1,1]=>4
[2,1,1,1,1]=>5
[1,1,1,1,1,1]=>6
[7]=>15
[6,1]=>7
[5,2]=>7
[5,1,1]=>6
[4,3]=>6
[4,2,1]=>5
[4,1,1,1]=>4
[3,3,1]=>7
[3,2,2]=>7
[3,2,1,1]=>5
[3,1,1,1,1]=>5
[2,2,2,1]=>5
[2,2,1,1,1]=>5
[2,1,1,1,1,1]=>6
[1,1,1,1,1,1,1]=>8
[8]=>22
[7,1]=>11
[6,2]=>12
[6,1,1]=>9
[5,3]=>11
[5,2,1]=>5
[5,1,1,1]=>10
[4,4]=>9
[4,3,1]=>8
[4,2,2]=>8
[4,2,1,1]=>3
[4,1,1,1,1]=>8
[3,3,2]=>5
[3,3,1,1]=>6
[3,2,2,1]=>7
[3,2,1,1,1]=>5
[3,1,1,1,1,1]=>9
[2,2,2,2]=>8
[2,2,2,1,1]=>9
[2,2,1,1,1,1]=>8
[2,1,1,1,1,1,1]=>9
[1,1,1,1,1,1,1,1]=>12
[9]=>30
[8,1]=>15
[7,2]=>16
[7,1,1]=>13
[6,3]=>11
[6,2,1]=>10
[6,1,1,1]=>13
[5,4]=>12
[5,3,1]=>7
[5,2,2]=>9
[5,2,1,1]=>12
[5,1,1,1,1]=>6
[4,4,1]=>11
[4,3,2]=>10
[4,3,1,1]=>10
[4,2,2,1]=>9
[4,2,1,1,1]=>10
[4,1,1,1,1,1]=>12
[3,3,3]=>7
[3,3,2,1]=>11
[3,3,1,1,1]=>7
[3,2,2,2]=>12
[3,2,2,1,1]=>7
[3,2,1,1,1,1]=>13
[3,1,1,1,1,1,1]=>12
[2,2,2,2,1]=>11
[2,2,2,1,1,1]=>9
[2,2,1,1,1,1,1]=>11
[2,1,1,1,1,1,1,1]=>12
[1,1,1,1,1,1,1,1,1]=>16
[10]=>42
[9,1]=>22
[8,2]=>24
[8,1,1]=>17
[7,3]=>18
[7,2,1]=>11
[7,1,1,1]=>21
[6,4]=>19
[6,3,1]=>16
[6,2,2]=>17
[6,2,1,1]=>13
[6,1,1,1,1]=>16
[5,5]=>15
[5,4,1]=>11
[5,3,2]=>14
[5,3,1,1]=>9
[5,2,2,1]=>14
[5,2,1,1,1]=>6
[5,1,1,1,1,1]=>16
[4,4,2]=>16
[4,4,1,1]=>15
[4,3,3]=>14
[4,3,2,1]=>4
[4,3,1,1,1]=>13
[4,2,2,2]=>15
[4,2,2,1,1]=>10
[4,2,1,1,1,1]=>13
[4,1,1,1,1,1,1]=>13
[3,3,3,1]=>16
[3,3,2,2]=>15
[3,3,2,1,1]=>15
[3,3,1,1,1,1]=>14
[3,2,2,2,1]=>11
[3,2,2,1,1,1]=>17
[3,2,1,1,1,1,1]=>11
[3,1,1,1,1,1,1,1]=>16
[2,2,2,2,2]=>17
[2,2,2,2,1,1]=>16
[2,2,2,1,1,1,1]=>15
[2,2,1,1,1,1,1,1]=>15
[2,1,1,1,1,1,1,1,1]=>18
[1,1,1,1,1,1,1,1,1,1]=>22
[11]=>56
[10,1]=>30
[9,2]=>33
[9,1,1]=>24
[8,3]=>27
[8,2,1]=>19
[8,1,1,1]=>25
[7,4]=>33
[7,3,1]=>18
[7,2,2]=>24
[7,2,1,1]=>15
[7,1,1,1,1]=>23
[6,5]=>21
[6,4,1]=>20
[6,3,2]=>18
[6,3,1,1]=>13
[6,2,2,1]=>14
[6,2,1,1,1]=>19
[6,1,1,1,1,1]=>12
[5,5,1]=>22
[5,4,2]=>17
[5,4,1,1]=>24
[5,3,3]=>21
[5,3,2,1]=>20
[5,3,1,1,1]=>21
[5,2,2,2]=>16
[5,2,2,1,1]=>21
[5,2,1,1,1,1]=>22
[5,1,1,1,1,1,1]=>20
[4,4,3]=>22
[4,4,2,1]=>19
[4,4,1,1,1]=>15
[4,3,3,1]=>9
[4,3,2,2]=>19
[4,3,2,1,1]=>18
[4,3,1,1,1,1]=>14
[4,2,2,2,1]=>20
[4,2,2,1,1,1]=>14
[4,2,1,1,1,1,1]=>14
[4,1,1,1,1,1,1,1]=>21
[3,3,3,2]=>20
[3,3,3,1,1]=>20
[3,3,2,2,1]=>14
[3,3,2,1,1,1]=>18
[3,3,1,1,1,1,1]=>19
[3,2,2,2,2]=>22
[3,2,2,2,1,1]=>21
[3,2,2,1,1,1,1]=>17
[3,2,1,1,1,1,1,1]=>20
[3,1,1,1,1,1,1,1,1]=>22
[2,2,2,2,2,1]=>20
[2,2,2,2,1,1,1]=>25
[2,2,2,1,1,1,1,1]=>21
[2,2,1,1,1,1,1,1,1]=>21
[2,1,1,1,1,1,1,1,1,1]=>23
[1,1,1,1,1,1,1,1,1,1,1]=>29
[12]=>77
[11,1]=>42
[10,2]=>46
[10,1,1]=>34
[9,3]=>40
[9,2,1]=>22
[9,1,1,1]=>37
[8,4]=>36
[8,3,1]=>25
[8,2,2]=>33
[8,2,1,1]=>31
[8,1,1,1,1]=>31
[7,5]=>35
[7,4,1]=>19
[7,3,2]=>24
[7,3,1,1]=>29
[7,2,2,1]=>24
[7,2,1,1,1]=>20
[7,1,1,1,1,1]=>31
[6,6]=>29
[6,5,1]=>30
[6,4,2]=>17
[6,4,1,1]=>27
[6,3,3]=>24
[6,3,2,1]=>11
[6,3,1,1,1]=>20
[6,2,2,2]=>24
[6,2,2,1,1]=>19
[6,2,1,1,1,1]=>13
[6,1,1,1,1,1,1]=>26
[5,5,2]=>26
[5,5,1,1]=>26
[5,4,3]=>23
[5,4,2,1]=>22
[5,4,1,1,1]=>19
[5,3,3,1]=>27
[5,3,2,2]=>21
[5,3,2,1,1]=>12
[5,3,1,1,1,1]=>19
[5,2,2,2,1]=>20
[5,2,2,1,1,1]=>18
[5,2,1,1,1,1,1]=>20
[5,1,1,1,1,1,1,1]=>29
[4,4,4]=>30
[4,4,3,1]=>26
[4,4,2,2]=>13
[4,4,2,1,1]=>19
[4,4,1,1,1,1]=>20
[4,3,3,2]=>26
[4,3,3,1,1]=>25
[4,3,2,2,1]=>22
[4,3,2,1,1,1]=>11
[4,3,1,1,1,1,1]=>24
[4,2,2,2,2]=>25
[4,2,2,2,1,1]=>26
[4,2,2,1,1,1,1]=>25
[4,2,1,1,1,1,1,1]=>30
[4,1,1,1,1,1,1,1,1]=>30
[3,3,3,3]=>27
[3,3,3,2,1]=>23
[3,3,3,1,1,1]=>25
[3,3,2,2,2]=>23
[3,3,2,2,1,1]=>17
[3,3,2,1,1,1,1]=>22
[3,3,1,1,1,1,1,1]=>28
[3,2,2,2,2,1]=>31
[3,2,2,2,1,1,1]=>19
[3,2,2,1,1,1,1,1]=>24
[3,2,1,1,1,1,1,1,1]=>23
[3,1,1,1,1,1,1,1,1,1]=>30
[2,2,2,2,2,2]=>29
[2,2,2,2,2,1,1]=>31
[2,2,2,2,1,1,1,1]=>27
[2,2,2,1,1,1,1,1,1]=>30
[2,2,1,1,1,1,1,1,1,1]=>29
[2,1,1,1,1,1,1,1,1,1,1]=>32
[1,1,1,1,1,1,1,1,1,1,1,1]=>40
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of positive values of the symmetric group character corresponding to the partition.
For example, the character values of the irreducible representation $S^{(2,2)}$ are $2$ on the conjugacy classes $(4)$ and $(2,2)$, $0$ on the conjugacy classes $(3,1)$ and $(1,1,1,1)$, and $-1$ on the conjugacy class $(2,1,1)$. Therefore, the statistic on the partition $(2,2)$ is $2$.
For example, the character values of the irreducible representation $S^{(2,2)}$ are $2$ on the conjugacy classes $(4)$ and $(2,2)$, $0$ on the conjugacy classes $(3,1)$ and $(1,1,1,1)$, and $-1$ on the conjugacy class $(2,1,1)$. Therefore, the statistic on the partition $(2,2)$ is $2$.
References
[1] Miller, A. R. Note on parity and the irreducible characters of the symmetric group arXiv:1708.03267
Code
@cached_function def table(n): s = SymmetricFunctions(ZZ).s() p = SymmetricFunctions(ZZ).p() res = dict() P = Partitions(n) r = P.cardinality() for mu in P: res[mu] = [0]*r for i, la in enumerate(P): for mu, v in s(p(la)): res[mu][i] = v return res def statistic(la): t = table(la.size()) return len([1 for e in t[la] if e > 0])
Created
Aug 11, 2017 at 23:10 by Martin Rubey
Updated
Aug 11, 2017 at 23:10 by Martin Rubey
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!