Identifier
- St000942: Parking functions ⟶ ℤ
Values
=>
[1]=>1
[1,1]=>0
[1,2]=>2
[2,1]=>1
[1,1,1]=>0
[1,1,2]=>0
[1,2,1]=>0
[2,1,1]=>0
[1,1,3]=>1
[1,3,1]=>1
[3,1,1]=>1
[1,2,2]=>1
[2,1,2]=>0
[2,2,1]=>0
[1,2,3]=>3
[1,3,2]=>2
[2,1,3]=>2
[2,3,1]=>2
[3,1,2]=>1
[3,2,1]=>1
[1,1,1,1]=>0
[1,1,1,2]=>0
[1,1,2,1]=>0
[1,2,1,1]=>0
[2,1,1,1]=>0
[1,1,1,3]=>0
[1,1,3,1]=>0
[1,3,1,1]=>0
[3,1,1,1]=>0
[1,1,1,4]=>1
[1,1,4,1]=>1
[1,4,1,1]=>1
[4,1,1,1]=>1
[1,1,2,2]=>0
[1,2,1,2]=>0
[1,2,2,1]=>0
[2,1,1,2]=>0
[2,1,2,1]=>0
[2,2,1,1]=>0
[1,1,2,3]=>0
[1,1,3,2]=>0
[1,2,1,3]=>0
[1,2,3,1]=>0
[1,3,1,2]=>0
[1,3,2,1]=>0
[2,1,1,3]=>0
[2,1,3,1]=>0
[2,3,1,1]=>0
[3,1,1,2]=>0
[3,1,2,1]=>0
[3,2,1,1]=>0
[1,1,2,4]=>1
[1,1,4,2]=>1
[1,2,1,4]=>1
[1,2,4,1]=>1
[1,4,1,2]=>1
[1,4,2,1]=>1
[2,1,1,4]=>1
[2,1,4,1]=>1
[2,4,1,1]=>1
[4,1,1,2]=>1
[4,1,2,1]=>1
[4,2,1,1]=>1
[1,1,3,3]=>0
[1,3,1,3]=>0
[1,3,3,1]=>0
[3,1,1,3]=>0
[3,1,3,1]=>0
[3,3,1,1]=>0
[1,1,3,4]=>2
[1,1,4,3]=>1
[1,3,1,4]=>2
[1,3,4,1]=>2
[1,4,1,3]=>1
[1,4,3,1]=>1
[3,1,1,4]=>2
[3,1,4,1]=>2
[3,4,1,1]=>2
[4,1,1,3]=>1
[4,1,3,1]=>1
[4,3,1,1]=>1
[1,2,2,2]=>1
[2,1,2,2]=>0
[2,2,1,2]=>0
[2,2,2,1]=>0
[1,2,2,3]=>1
[1,2,3,2]=>1
[1,3,2,2]=>1
[2,1,2,3]=>0
[2,1,3,2]=>0
[2,2,1,3]=>0
[2,2,3,1]=>0
[2,3,1,2]=>0
[2,3,2,1]=>0
[3,1,2,2]=>0
[3,2,1,2]=>0
[3,2,2,1]=>0
[1,2,2,4]=>2
[1,2,4,2]=>2
[1,4,2,2]=>2
[2,1,2,4]=>1
[2,1,4,2]=>1
[2,2,1,4]=>1
[2,2,4,1]=>1
[2,4,1,2]=>1
[2,4,2,1]=>1
[4,1,2,2]=>1
[4,2,1,2]=>1
[4,2,2,1]=>1
[1,2,3,3]=>2
[1,3,2,3]=>1
[1,3,3,2]=>1
[2,1,3,3]=>1
[2,3,1,3]=>1
[2,3,3,1]=>1
[3,1,2,3]=>0
[3,1,3,2]=>0
[3,2,1,3]=>0
[3,2,3,1]=>0
[3,3,1,2]=>0
[3,3,2,1]=>0
[1,2,3,4]=>4
[1,2,4,3]=>3
[1,3,2,4]=>3
[1,3,4,2]=>3
[1,4,2,3]=>2
[1,4,3,2]=>2
[2,1,3,4]=>3
[2,1,4,3]=>2
[2,3,1,4]=>3
[2,3,4,1]=>3
[2,4,1,3]=>2
[2,4,3,1]=>2
[3,1,2,4]=>2
[3,1,4,2]=>2
[3,2,1,4]=>2
[3,2,4,1]=>2
[3,4,1,2]=>2
[3,4,2,1]=>2
[4,1,2,3]=>1
[4,1,3,2]=>1
[4,2,1,3]=>1
[4,2,3,1]=>1
[4,3,1,2]=>1
[4,3,2,1]=>1
[1,1,1,1,1]=>0
[1,1,1,1,2]=>0
[1,1,1,2,1]=>0
[1,1,2,1,1]=>0
[1,2,1,1,1]=>0
[2,1,1,1,1]=>0
[1,1,1,1,3]=>0
[1,1,1,3,1]=>0
[1,1,3,1,1]=>0
[1,3,1,1,1]=>0
[3,1,1,1,1]=>0
[1,1,1,1,4]=>0
[1,1,1,4,1]=>0
[1,1,4,1,1]=>0
[1,4,1,1,1]=>0
[4,1,1,1,1]=>0
[1,1,1,1,5]=>1
[1,1,1,5,1]=>1
[1,1,5,1,1]=>1
[1,5,1,1,1]=>1
[5,1,1,1,1]=>1
[1,1,1,2,2]=>0
[1,1,2,1,2]=>0
[1,1,2,2,1]=>0
[1,2,1,1,2]=>0
[1,2,1,2,1]=>0
[1,2,2,1,1]=>0
[2,1,1,1,2]=>0
[2,1,1,2,1]=>0
[2,1,2,1,1]=>0
[2,2,1,1,1]=>0
[1,1,1,2,3]=>0
[1,1,1,3,2]=>0
[1,1,2,1,3]=>0
[1,1,2,3,1]=>0
[1,1,3,1,2]=>0
[1,1,3,2,1]=>0
[1,2,1,1,3]=>0
[1,2,1,3,1]=>0
[1,2,3,1,1]=>0
[1,3,1,1,2]=>0
[1,3,1,2,1]=>0
[1,3,2,1,1]=>0
[2,1,1,1,3]=>0
[2,1,1,3,1]=>0
[2,1,3,1,1]=>0
[2,3,1,1,1]=>0
[3,1,1,1,2]=>0
[3,1,1,2,1]=>0
[3,1,2,1,1]=>0
[3,2,1,1,1]=>0
[1,1,1,2,4]=>0
[1,1,1,4,2]=>0
[1,1,2,1,4]=>0
[1,1,2,4,1]=>0
[1,1,4,1,2]=>0
[1,1,4,2,1]=>0
[1,2,1,1,4]=>0
[1,2,1,4,1]=>0
[1,2,4,1,1]=>0
[1,4,1,1,2]=>0
[1,4,1,2,1]=>0
[1,4,2,1,1]=>0
[2,1,1,1,4]=>0
[2,1,1,4,1]=>0
[2,1,4,1,1]=>0
[2,4,1,1,1]=>0
[4,1,1,1,2]=>0
[4,1,1,2,1]=>0
[4,1,2,1,1]=>0
[4,2,1,1,1]=>0
[1,1,1,2,5]=>1
[1,1,1,5,2]=>1
[1,1,2,1,5]=>1
[1,1,2,5,1]=>1
[1,1,5,1,2]=>1
[1,1,5,2,1]=>1
[1,2,1,1,5]=>1
[1,2,1,5,1]=>1
[1,2,5,1,1]=>1
[1,5,1,1,2]=>1
[1,5,1,2,1]=>1
[1,5,2,1,1]=>1
[2,1,1,1,5]=>1
[2,1,1,5,1]=>1
[2,1,5,1,1]=>1
[2,5,1,1,1]=>1
[5,1,1,1,2]=>1
[5,1,1,2,1]=>1
[5,1,2,1,1]=>1
[5,2,1,1,1]=>1
[1,1,1,3,3]=>0
[1,1,3,1,3]=>0
[1,1,3,3,1]=>0
[1,3,1,1,3]=>0
[1,3,1,3,1]=>0
[1,3,3,1,1]=>0
[3,1,1,1,3]=>0
[3,1,1,3,1]=>0
[3,1,3,1,1]=>0
[3,3,1,1,1]=>0
[1,1,1,3,4]=>0
[1,1,1,4,3]=>0
[1,1,3,1,4]=>0
[1,1,3,4,1]=>0
[1,1,4,1,3]=>0
[1,1,4,3,1]=>0
[1,3,1,1,4]=>0
[1,3,1,4,1]=>0
[1,3,4,1,1]=>0
[1,4,1,1,3]=>0
[1,4,1,3,1]=>0
[1,4,3,1,1]=>0
[3,1,1,1,4]=>0
[3,1,1,4,1]=>0
[3,1,4,1,1]=>0
[3,4,1,1,1]=>0
[4,1,1,1,3]=>0
[4,1,1,3,1]=>0
[4,1,3,1,1]=>0
[4,3,1,1,1]=>0
[1,1,1,3,5]=>1
[1,1,1,5,3]=>1
[1,1,3,1,5]=>1
[1,1,3,5,1]=>1
[1,1,5,1,3]=>1
[1,1,5,3,1]=>1
[1,3,1,1,5]=>1
[1,3,1,5,1]=>1
[1,3,5,1,1]=>1
[1,5,1,1,3]=>1
[1,5,1,3,1]=>1
[1,5,3,1,1]=>1
[3,1,1,1,5]=>1
[3,1,1,5,1]=>1
[3,1,5,1,1]=>1
[3,5,1,1,1]=>1
[5,1,1,1,3]=>1
[5,1,1,3,1]=>1
[5,1,3,1,1]=>1
[5,3,1,1,1]=>1
[1,1,1,4,4]=>0
[1,1,4,1,4]=>0
[1,1,4,4,1]=>0
[1,4,1,1,4]=>0
[1,4,1,4,1]=>0
[1,4,4,1,1]=>0
[4,1,1,1,4]=>0
[4,1,1,4,1]=>0
[4,1,4,1,1]=>0
[4,4,1,1,1]=>0
[1,1,1,4,5]=>2
[1,1,1,5,4]=>1
[1,1,4,1,5]=>2
[1,1,4,5,1]=>2
[1,1,5,1,4]=>1
[1,1,5,4,1]=>1
[1,4,1,1,5]=>2
[1,4,1,5,1]=>2
[1,4,5,1,1]=>2
[1,5,1,1,4]=>1
[1,5,1,4,1]=>1
[1,5,4,1,1]=>1
[4,1,1,1,5]=>2
[4,1,1,5,1]=>2
[4,1,5,1,1]=>2
[4,5,1,1,1]=>2
[5,1,1,1,4]=>1
[5,1,1,4,1]=>1
[5,1,4,1,1]=>1
[5,4,1,1,1]=>1
[1,1,2,2,2]=>0
[1,2,1,2,2]=>0
[1,2,2,1,2]=>0
[1,2,2,2,1]=>0
[2,1,1,2,2]=>0
[2,1,2,1,2]=>0
[2,1,2,2,1]=>0
[2,2,1,1,2]=>0
[2,2,1,2,1]=>0
[2,2,2,1,1]=>0
[1,1,2,2,3]=>0
[1,1,2,3,2]=>0
[1,1,3,2,2]=>0
[1,2,1,2,3]=>0
[1,2,1,3,2]=>0
[1,2,2,1,3]=>0
[1,2,2,3,1]=>0
[1,2,3,1,2]=>0
[1,2,3,2,1]=>0
[1,3,1,2,2]=>0
[1,3,2,1,2]=>0
[1,3,2,2,1]=>0
[2,1,1,2,3]=>0
[2,1,1,3,2]=>0
[2,1,2,1,3]=>0
[2,1,2,3,1]=>0
[2,1,3,1,2]=>0
[2,1,3,2,1]=>0
[2,2,1,1,3]=>0
[2,2,1,3,1]=>0
[2,2,3,1,1]=>0
[2,3,1,1,2]=>0
[2,3,1,2,1]=>0
[2,3,2,1,1]=>0
[3,1,1,2,2]=>0
[3,1,2,1,2]=>0
[3,1,2,2,1]=>0
[3,2,1,1,2]=>0
[3,2,1,2,1]=>0
[3,2,2,1,1]=>0
[1,1,2,2,4]=>0
[1,1,2,4,2]=>0
[1,1,4,2,2]=>0
[1,2,1,2,4]=>0
[1,2,1,4,2]=>0
[1,2,2,1,4]=>0
[1,2,2,4,1]=>0
[1,2,4,1,2]=>0
[1,2,4,2,1]=>0
[1,4,1,2,2]=>0
[1,4,2,1,2]=>0
[1,4,2,2,1]=>0
[2,1,1,2,4]=>0
[2,1,1,4,2]=>0
[2,1,2,1,4]=>0
[2,1,2,4,1]=>0
[2,1,4,1,2]=>0
[2,1,4,2,1]=>0
[2,2,1,1,4]=>0
[2,2,1,4,1]=>0
[2,2,4,1,1]=>0
[2,4,1,1,2]=>0
[2,4,1,2,1]=>0
[2,4,2,1,1]=>0
[4,1,1,2,2]=>0
[4,1,2,1,2]=>0
[4,1,2,2,1]=>0
[4,2,1,1,2]=>0
[4,2,1,2,1]=>0
[4,2,2,1,1]=>0
[1,1,2,2,5]=>1
[1,1,2,5,2]=>1
[1,1,5,2,2]=>1
[1,2,1,2,5]=>1
[1,2,1,5,2]=>1
[1,2,2,1,5]=>1
[1,2,2,5,1]=>1
[1,2,5,1,2]=>1
[1,2,5,2,1]=>1
[1,5,1,2,2]=>1
[1,5,2,1,2]=>1
[1,5,2,2,1]=>1
[2,1,1,2,5]=>1
[2,1,1,5,2]=>1
[2,1,2,1,5]=>1
[2,1,2,5,1]=>1
[2,1,5,1,2]=>1
[2,1,5,2,1]=>1
[2,2,1,1,5]=>1
[2,2,1,5,1]=>1
[2,2,5,1,1]=>1
[2,5,1,1,2]=>1
[2,5,1,2,1]=>1
[2,5,2,1,1]=>1
[5,1,1,2,2]=>1
[5,1,2,1,2]=>1
[5,1,2,2,1]=>1
[5,2,1,1,2]=>1
[5,2,1,2,1]=>1
[5,2,2,1,1]=>1
[1,1,2,3,3]=>0
[1,1,3,2,3]=>0
[1,1,3,3,2]=>0
[1,2,1,3,3]=>0
[1,2,3,1,3]=>0
[1,2,3,3,1]=>0
[1,3,1,2,3]=>0
[1,3,1,3,2]=>0
[1,3,2,1,3]=>0
[1,3,2,3,1]=>0
[1,3,3,1,2]=>0
[1,3,3,2,1]=>0
[2,1,1,3,3]=>0
[2,1,3,1,3]=>0
[2,1,3,3,1]=>0
[2,3,1,1,3]=>0
[2,3,1,3,1]=>0
[2,3,3,1,1]=>0
[3,1,1,2,3]=>0
[3,1,1,3,2]=>0
[3,1,2,1,3]=>0
[3,1,2,3,1]=>0
[3,1,3,1,2]=>0
[3,1,3,2,1]=>0
[3,2,1,1,3]=>0
[3,2,1,3,1]=>0
[3,2,3,1,1]=>0
[3,3,1,1,2]=>0
[3,3,1,2,1]=>0
[3,3,2,1,1]=>0
[1,1,2,3,4]=>0
[1,1,2,4,3]=>0
[1,1,3,2,4]=>0
[1,1,3,4,2]=>0
[1,1,4,2,3]=>0
[1,1,4,3,2]=>0
[1,2,1,3,4]=>0
[1,2,1,4,3]=>0
[1,2,3,1,4]=>0
[1,2,3,4,1]=>0
[1,2,4,1,3]=>0
[1,2,4,3,1]=>0
[1,3,1,2,4]=>0
[1,3,1,4,2]=>0
[1,3,2,1,4]=>0
[1,3,2,4,1]=>0
[1,3,4,1,2]=>0
[1,3,4,2,1]=>0
[1,4,1,2,3]=>0
[1,4,1,3,2]=>0
[1,4,2,1,3]=>0
[1,4,2,3,1]=>0
[1,4,3,1,2]=>0
[1,4,3,2,1]=>0
[2,1,1,3,4]=>0
[2,1,1,4,3]=>0
[2,1,3,1,4]=>0
[2,1,3,4,1]=>0
[2,1,4,1,3]=>0
[2,1,4,3,1]=>0
[2,3,1,1,4]=>0
[2,3,1,4,1]=>0
[2,3,4,1,1]=>0
[2,4,1,1,3]=>0
[2,4,1,3,1]=>0
[2,4,3,1,1]=>0
[3,1,1,2,4]=>0
[3,1,1,4,2]=>0
[3,1,2,1,4]=>0
[3,1,2,4,1]=>0
[3,1,4,1,2]=>0
[3,1,4,2,1]=>0
[3,2,1,1,4]=>0
[3,2,1,4,1]=>0
[3,2,4,1,1]=>0
[3,4,1,1,2]=>0
[3,4,1,2,1]=>0
[3,4,2,1,1]=>0
[4,1,1,2,3]=>0
[4,1,1,3,2]=>0
[4,1,2,1,3]=>0
[4,1,2,3,1]=>0
[4,1,3,1,2]=>0
[4,1,3,2,1]=>0
[4,2,1,1,3]=>0
[4,2,1,3,1]=>0
[4,2,3,1,1]=>0
[4,3,1,1,2]=>0
[4,3,1,2,1]=>0
[4,3,2,1,1]=>0
[1,1,2,3,5]=>1
[1,1,2,5,3]=>1
[1,1,3,2,5]=>1
[1,1,3,5,2]=>1
[1,1,5,2,3]=>1
[1,1,5,3,2]=>1
[1,2,1,3,5]=>1
[1,2,1,5,3]=>1
[1,2,3,1,5]=>1
[1,2,3,5,1]=>1
[1,2,5,1,3]=>1
[1,2,5,3,1]=>1
[1,3,1,2,5]=>1
[1,3,1,5,2]=>1
[1,3,2,1,5]=>1
[1,3,2,5,1]=>1
[1,3,5,1,2]=>1
[1,3,5,2,1]=>1
[1,5,1,2,3]=>1
[1,5,1,3,2]=>1
[1,5,2,1,3]=>1
[1,5,2,3,1]=>1
[1,5,3,1,2]=>1
[1,5,3,2,1]=>1
[2,1,1,3,5]=>1
[2,1,1,5,3]=>1
[2,1,3,1,5]=>1
[2,1,3,5,1]=>1
[2,1,5,1,3]=>1
[2,1,5,3,1]=>1
[2,3,1,1,5]=>1
[2,3,1,5,1]=>1
[2,3,5,1,1]=>1
[2,5,1,1,3]=>1
[2,5,1,3,1]=>1
[2,5,3,1,1]=>1
[3,1,1,2,5]=>1
[3,1,1,5,2]=>1
[3,1,2,1,5]=>1
[3,1,2,5,1]=>1
[3,1,5,1,2]=>1
[3,1,5,2,1]=>1
[3,2,1,1,5]=>1
[3,2,1,5,1]=>1
[3,2,5,1,1]=>1
[3,5,1,1,2]=>1
[3,5,1,2,1]=>1
[3,5,2,1,1]=>1
[5,1,1,2,3]=>1
[5,1,1,3,2]=>1
[5,1,2,1,3]=>1
[5,1,2,3,1]=>1
[5,1,3,1,2]=>1
[5,1,3,2,1]=>1
[5,2,1,1,3]=>1
[5,2,1,3,1]=>1
[5,2,3,1,1]=>1
[5,3,1,1,2]=>1
[5,3,1,2,1]=>1
[5,3,2,1,1]=>1
[1,1,2,4,4]=>0
[1,1,4,2,4]=>0
[1,1,4,4,2]=>0
[1,2,1,4,4]=>0
[1,2,4,1,4]=>0
[1,2,4,4,1]=>0
[1,4,1,2,4]=>0
[1,4,1,4,2]=>0
[1,4,2,1,4]=>0
[1,4,2,4,1]=>0
[1,4,4,1,2]=>0
[1,4,4,2,1]=>0
[2,1,1,4,4]=>0
[2,1,4,1,4]=>0
[2,1,4,4,1]=>0
[2,4,1,1,4]=>0
[2,4,1,4,1]=>0
[2,4,4,1,1]=>0
[4,1,1,2,4]=>0
[4,1,1,4,2]=>0
[4,1,2,1,4]=>0
[4,1,2,4,1]=>0
[4,1,4,1,2]=>0
[4,1,4,2,1]=>0
[4,2,1,1,4]=>0
[4,2,1,4,1]=>0
[4,2,4,1,1]=>0
[4,4,1,1,2]=>0
[4,4,1,2,1]=>0
[4,4,2,1,1]=>0
[1,1,2,4,5]=>2
[1,1,2,5,4]=>1
[1,1,4,2,5]=>2
[1,1,4,5,2]=>2
[1,1,5,2,4]=>1
[1,1,5,4,2]=>1
[1,2,1,4,5]=>2
[1,2,1,5,4]=>1
[1,2,4,1,5]=>2
[1,2,4,5,1]=>2
[1,2,5,1,4]=>1
[1,2,5,4,1]=>1
[1,4,1,2,5]=>2
[1,4,1,5,2]=>2
[1,4,2,1,5]=>2
[1,4,2,5,1]=>2
[1,4,5,1,2]=>2
[1,4,5,2,1]=>2
[1,5,1,2,4]=>1
[1,5,1,4,2]=>1
[1,5,2,1,4]=>1
[1,5,2,4,1]=>1
[1,5,4,1,2]=>1
[1,5,4,2,1]=>1
[2,1,1,4,5]=>2
[2,1,1,5,4]=>1
[2,1,4,1,5]=>2
[2,1,4,5,1]=>2
[2,1,5,1,4]=>1
[2,1,5,4,1]=>1
[2,4,1,1,5]=>2
[2,4,1,5,1]=>2
[2,4,5,1,1]=>2
[2,5,1,1,4]=>1
[2,5,1,4,1]=>1
[2,5,4,1,1]=>1
[4,1,1,2,5]=>2
[4,1,1,5,2]=>2
[4,1,2,1,5]=>2
[4,1,2,5,1]=>2
[4,1,5,1,2]=>2
[4,1,5,2,1]=>2
[4,2,1,1,5]=>2
[4,2,1,5,1]=>2
[4,2,5,1,1]=>2
[4,5,1,1,2]=>2
[4,5,1,2,1]=>2
[4,5,2,1,1]=>2
[5,1,1,2,4]=>1
[5,1,1,4,2]=>1
[5,1,2,1,4]=>1
[5,1,2,4,1]=>1
[5,1,4,1,2]=>1
[5,1,4,2,1]=>1
[5,2,1,1,4]=>1
[5,2,1,4,1]=>1
[5,2,4,1,1]=>1
[5,4,1,1,2]=>1
[5,4,1,2,1]=>1
[5,4,2,1,1]=>1
[1,1,3,3,3]=>0
[1,3,1,3,3]=>0
[1,3,3,1,3]=>0
[1,3,3,3,1]=>0
[3,1,1,3,3]=>0
[3,1,3,1,3]=>0
[3,1,3,3,1]=>0
[3,3,1,1,3]=>0
[3,3,1,3,1]=>0
[3,3,3,1,1]=>0
[1,1,3,3,4]=>0
[1,1,3,4,3]=>0
[1,1,4,3,3]=>0
[1,3,1,3,4]=>0
[1,3,1,4,3]=>0
[1,3,3,1,4]=>0
[1,3,3,4,1]=>0
[1,3,4,1,3]=>0
[1,3,4,3,1]=>0
[1,4,1,3,3]=>0
[1,4,3,1,3]=>0
[1,4,3,3,1]=>0
[3,1,1,3,4]=>0
[3,1,1,4,3]=>0
[3,1,3,1,4]=>0
[3,1,3,4,1]=>0
[3,1,4,1,3]=>0
[3,1,4,3,1]=>0
[3,3,1,1,4]=>0
[3,3,1,4,1]=>0
[3,3,4,1,1]=>0
[3,4,1,1,3]=>0
[3,4,1,3,1]=>0
[3,4,3,1,1]=>0
[4,1,1,3,3]=>0
[4,1,3,1,3]=>0
[4,1,3,3,1]=>0
[4,3,1,1,3]=>0
[4,3,1,3,1]=>0
[4,3,3,1,1]=>0
[1,1,3,3,5]=>1
[1,1,3,5,3]=>1
[1,1,5,3,3]=>1
[1,3,1,3,5]=>1
[1,3,1,5,3]=>1
[1,3,3,1,5]=>1
[1,3,3,5,1]=>1
[1,3,5,1,3]=>1
[1,3,5,3,1]=>1
[1,5,1,3,3]=>1
[1,5,3,1,3]=>1
[1,5,3,3,1]=>1
[3,1,1,3,5]=>1
[3,1,1,5,3]=>1
[3,1,3,1,5]=>1
[3,1,3,5,1]=>1
[3,1,5,1,3]=>1
[3,1,5,3,1]=>1
[3,3,1,1,5]=>1
[3,3,1,5,1]=>1
[3,3,5,1,1]=>1
[3,5,1,1,3]=>1
[3,5,1,3,1]=>1
[3,5,3,1,1]=>1
[5,1,1,3,3]=>1
[5,1,3,1,3]=>1
[5,1,3,3,1]=>1
[5,3,1,1,3]=>1
[5,3,1,3,1]=>1
[5,3,3,1,1]=>1
[1,1,3,4,4]=>1
[1,1,4,3,4]=>0
[1,1,4,4,3]=>0
[1,3,1,4,4]=>1
[1,3,4,1,4]=>1
[1,3,4,4,1]=>1
[1,4,1,3,4]=>0
[1,4,1,4,3]=>0
[1,4,3,1,4]=>0
[1,4,3,4,1]=>0
[1,4,4,1,3]=>0
[1,4,4,3,1]=>0
[3,1,1,4,4]=>1
[3,1,4,1,4]=>1
[3,1,4,4,1]=>1
[3,4,1,1,4]=>1
[3,4,1,4,1]=>1
[3,4,4,1,1]=>1
[4,1,1,3,4]=>0
[4,1,1,4,3]=>0
[4,1,3,1,4]=>0
[4,1,3,4,1]=>0
[4,1,4,1,3]=>0
[4,1,4,3,1]=>0
[4,3,1,1,4]=>0
[4,3,1,4,1]=>0
[4,3,4,1,1]=>0
[4,4,1,1,3]=>0
[4,4,1,3,1]=>0
[4,4,3,1,1]=>0
[1,1,3,4,5]=>3
[1,1,3,5,4]=>2
[1,1,4,3,5]=>2
[1,1,4,5,3]=>2
[1,1,5,3,4]=>1
[1,1,5,4,3]=>1
[1,3,1,4,5]=>3
[1,3,1,5,4]=>2
[1,3,4,1,5]=>3
[1,3,4,5,1]=>3
[1,3,5,1,4]=>2
[1,3,5,4,1]=>2
[1,4,1,3,5]=>2
[1,4,1,5,3]=>2
[1,4,3,1,5]=>2
[1,4,3,5,1]=>2
[1,4,5,1,3]=>2
[1,4,5,3,1]=>2
[1,5,1,3,4]=>1
[1,5,1,4,3]=>1
[1,5,3,1,4]=>1
[1,5,3,4,1]=>1
[1,5,4,1,3]=>1
[1,5,4,3,1]=>1
[3,1,1,4,5]=>3
[3,1,1,5,4]=>2
[3,1,4,1,5]=>3
[3,1,4,5,1]=>3
[3,1,5,1,4]=>2
[3,1,5,4,1]=>2
[3,4,1,1,5]=>3
[3,4,1,5,1]=>3
[3,4,5,1,1]=>3
[3,5,1,1,4]=>2
[3,5,1,4,1]=>2
[3,5,4,1,1]=>2
[4,1,1,3,5]=>2
[4,1,1,5,3]=>2
[4,1,3,1,5]=>2
[4,1,3,5,1]=>2
[4,1,5,1,3]=>2
[4,1,5,3,1]=>2
[4,3,1,1,5]=>2
[4,3,1,5,1]=>2
[4,3,5,1,1]=>2
[4,5,1,1,3]=>2
[4,5,1,3,1]=>2
[4,5,3,1,1]=>2
[5,1,1,3,4]=>1
[5,1,1,4,3]=>1
[5,1,3,1,4]=>1
[5,1,3,4,1]=>1
[5,1,4,1,3]=>1
[5,1,4,3,1]=>1
[5,3,1,1,4]=>1
[5,3,1,4,1]=>1
[5,3,4,1,1]=>1
[5,4,1,1,3]=>1
[5,4,1,3,1]=>1
[5,4,3,1,1]=>1
[1,2,2,2,2]=>1
[2,1,2,2,2]=>0
[2,2,1,2,2]=>0
[2,2,2,1,2]=>0
[2,2,2,2,1]=>0
[1,2,2,2,3]=>1
[1,2,2,3,2]=>1
[1,2,3,2,2]=>1
[1,3,2,2,2]=>1
[2,1,2,2,3]=>0
[2,1,2,3,2]=>0
[2,1,3,2,2]=>0
[2,2,1,2,3]=>0
[2,2,1,3,2]=>0
[2,2,2,1,3]=>0
[2,2,2,3,1]=>0
[2,2,3,1,2]=>0
[2,2,3,2,1]=>0
[2,3,1,2,2]=>0
[2,3,2,1,2]=>0
[2,3,2,2,1]=>0
[3,1,2,2,2]=>0
[3,2,1,2,2]=>0
[3,2,2,1,2]=>0
[3,2,2,2,1]=>0
[1,2,2,2,4]=>1
[1,2,2,4,2]=>1
[1,2,4,2,2]=>1
[1,4,2,2,2]=>1
[2,1,2,2,4]=>0
[2,1,2,4,2]=>0
[2,1,4,2,2]=>0
[2,2,1,2,4]=>0
[2,2,1,4,2]=>0
[2,2,2,1,4]=>0
[2,2,2,4,1]=>0
[2,2,4,1,2]=>0
[2,2,4,2,1]=>0
[2,4,1,2,2]=>0
[2,4,2,1,2]=>0
[2,4,2,2,1]=>0
[4,1,2,2,2]=>0
[4,2,1,2,2]=>0
[4,2,2,1,2]=>0
[4,2,2,2,1]=>0
[1,2,2,2,5]=>2
[1,2,2,5,2]=>2
[1,2,5,2,2]=>2
[1,5,2,2,2]=>2
[2,1,2,2,5]=>1
[2,1,2,5,2]=>1
[2,1,5,2,2]=>1
[2,2,1,2,5]=>1
[2,2,1,5,2]=>1
[2,2,2,1,5]=>1
[2,2,2,5,1]=>1
[2,2,5,1,2]=>1
[2,2,5,2,1]=>1
[2,5,1,2,2]=>1
[2,5,2,1,2]=>1
[2,5,2,2,1]=>1
[5,1,2,2,2]=>1
[5,2,1,2,2]=>1
[5,2,2,1,2]=>1
[5,2,2,2,1]=>1
[1,2,2,3,3]=>1
[1,2,3,2,3]=>1
[1,2,3,3,2]=>1
[1,3,2,2,3]=>1
[1,3,2,3,2]=>1
[1,3,3,2,2]=>1
[2,1,2,3,3]=>0
[2,1,3,2,3]=>0
[2,1,3,3,2]=>0
[2,2,1,3,3]=>0
[2,2,3,1,3]=>0
[2,2,3,3,1]=>0
[2,3,1,2,3]=>0
[2,3,1,3,2]=>0
[2,3,2,1,3]=>0
[2,3,2,3,1]=>0
[2,3,3,1,2]=>0
[2,3,3,2,1]=>0
[3,1,2,2,3]=>0
[3,1,2,3,2]=>0
[3,1,3,2,2]=>0
[3,2,1,2,3]=>0
[3,2,1,3,2]=>0
[3,2,2,1,3]=>0
[3,2,2,3,1]=>0
[3,2,3,1,2]=>0
[3,2,3,2,1]=>0
[3,3,1,2,2]=>0
[3,3,2,1,2]=>0
[3,3,2,2,1]=>0
[1,2,2,3,4]=>1
[1,2,2,4,3]=>1
[1,2,3,2,4]=>1
[1,2,3,4,2]=>1
[1,2,4,2,3]=>1
[1,2,4,3,2]=>1
[1,3,2,2,4]=>1
[1,3,2,4,2]=>1
[1,3,4,2,2]=>1
[1,4,2,2,3]=>1
[1,4,2,3,2]=>1
[1,4,3,2,2]=>1
[2,1,2,3,4]=>0
[2,1,2,4,3]=>0
[2,1,3,2,4]=>0
[2,1,3,4,2]=>0
[2,1,4,2,3]=>0
[2,1,4,3,2]=>0
[2,2,1,3,4]=>0
[2,2,1,4,3]=>0
[2,2,3,1,4]=>0
[2,2,3,4,1]=>0
[2,2,4,1,3]=>0
[2,2,4,3,1]=>0
[2,3,1,2,4]=>0
[2,3,1,4,2]=>0
[2,3,2,1,4]=>0
[2,3,2,4,1]=>0
[2,3,4,1,2]=>0
[2,3,4,2,1]=>0
[2,4,1,2,3]=>0
[2,4,1,3,2]=>0
[2,4,2,1,3]=>0
[2,4,2,3,1]=>0
[2,4,3,1,2]=>0
[2,4,3,2,1]=>0
[3,1,2,2,4]=>0
[3,1,2,4,2]=>0
[3,1,4,2,2]=>0
[3,2,1,2,4]=>0
[3,2,1,4,2]=>0
[3,2,2,1,4]=>0
[3,2,2,4,1]=>0
[3,2,4,1,2]=>0
[3,2,4,2,1]=>0
[3,4,1,2,2]=>0
[3,4,2,1,2]=>0
[3,4,2,2,1]=>0
[4,1,2,2,3]=>0
[4,1,2,3,2]=>0
[4,1,3,2,2]=>0
[4,2,1,2,3]=>0
[4,2,1,3,2]=>0
[4,2,2,1,3]=>0
[4,2,2,3,1]=>0
[4,2,3,1,2]=>0
[4,2,3,2,1]=>0
[4,3,1,2,2]=>0
[4,3,2,1,2]=>0
[4,3,2,2,1]=>0
[1,2,2,3,5]=>2
[1,2,2,5,3]=>2
[1,2,3,2,5]=>2
[1,2,3,5,2]=>2
[1,2,5,2,3]=>2
[1,2,5,3,2]=>2
[1,3,2,2,5]=>2
[1,3,2,5,2]=>2
[1,3,5,2,2]=>2
[1,5,2,2,3]=>2
[1,5,2,3,2]=>2
[1,5,3,2,2]=>2
[2,1,2,3,5]=>1
[2,1,2,5,3]=>1
[2,1,3,2,5]=>1
[2,1,3,5,2]=>1
[2,1,5,2,3]=>1
[2,1,5,3,2]=>1
[2,2,1,3,5]=>1
[2,2,1,5,3]=>1
[2,2,3,1,5]=>1
[2,2,3,5,1]=>1
[2,2,5,1,3]=>1
[2,2,5,3,1]=>1
[2,3,1,2,5]=>1
[2,3,1,5,2]=>1
[2,3,2,1,5]=>1
[2,3,2,5,1]=>1
[2,3,5,1,2]=>1
[2,3,5,2,1]=>1
[2,5,1,2,3]=>1
[2,5,1,3,2]=>1
[2,5,2,1,3]=>1
[2,5,2,3,1]=>1
[2,5,3,1,2]=>1
[2,5,3,2,1]=>1
[3,1,2,2,5]=>1
[3,1,2,5,2]=>1
[3,1,5,2,2]=>1
[3,2,1,2,5]=>1
[3,2,1,5,2]=>1
[3,2,2,1,5]=>1
[3,2,2,5,1]=>1
[3,2,5,1,2]=>1
[3,2,5,2,1]=>1
[3,5,1,2,2]=>1
[3,5,2,1,2]=>1
[3,5,2,2,1]=>1
[5,1,2,2,3]=>1
[5,1,2,3,2]=>1
[5,1,3,2,2]=>1
[5,2,1,2,3]=>1
[5,2,1,3,2]=>1
[5,2,2,1,3]=>1
[5,2,2,3,1]=>1
[5,2,3,1,2]=>1
[5,2,3,2,1]=>1
[5,3,1,2,2]=>1
[5,3,2,1,2]=>1
[5,3,2,2,1]=>1
[1,2,2,4,4]=>1
[1,2,4,2,4]=>1
[1,2,4,4,2]=>1
[1,4,2,2,4]=>1
[1,4,2,4,2]=>1
[1,4,4,2,2]=>1
[2,1,2,4,4]=>0
[2,1,4,2,4]=>0
[2,1,4,4,2]=>0
[2,2,1,4,4]=>0
[2,2,4,1,4]=>0
[2,2,4,4,1]=>0
[2,4,1,2,4]=>0
[2,4,1,4,2]=>0
[2,4,2,1,4]=>0
[2,4,2,4,1]=>0
[2,4,4,1,2]=>0
[2,4,4,2,1]=>0
[4,1,2,2,4]=>0
[4,1,2,4,2]=>0
[4,1,4,2,2]=>0
[4,2,1,2,4]=>0
[4,2,1,4,2]=>0
[4,2,2,1,4]=>0
[4,2,2,4,1]=>0
[4,2,4,1,2]=>0
[4,2,4,2,1]=>0
[4,4,1,2,2]=>0
[4,4,2,1,2]=>0
[4,4,2,2,1]=>0
[1,2,2,4,5]=>3
[1,2,2,5,4]=>2
[1,2,4,2,5]=>3
[1,2,4,5,2]=>3
[1,2,5,2,4]=>2
[1,2,5,4,2]=>2
[1,4,2,2,5]=>3
[1,4,2,5,2]=>3
[1,4,5,2,2]=>3
[1,5,2,2,4]=>2
[1,5,2,4,2]=>2
[1,5,4,2,2]=>2
[2,1,2,4,5]=>2
[2,1,2,5,4]=>1
[2,1,4,2,5]=>2
[2,1,4,5,2]=>2
[2,1,5,2,4]=>1
[2,1,5,4,2]=>1
[2,2,1,4,5]=>2
[2,2,1,5,4]=>1
[2,2,4,1,5]=>2
[2,2,4,5,1]=>2
[2,2,5,1,4]=>1
[2,2,5,4,1]=>1
[2,4,1,2,5]=>2
[2,4,1,5,2]=>2
[2,4,2,1,5]=>2
[2,4,2,5,1]=>2
[2,4,5,1,2]=>2
[2,4,5,2,1]=>2
[2,5,1,2,4]=>1
[2,5,1,4,2]=>1
[2,5,2,1,4]=>1
[2,5,2,4,1]=>1
[2,5,4,1,2]=>1
[2,5,4,2,1]=>1
[4,1,2,2,5]=>2
[4,1,2,5,2]=>2
[4,1,5,2,2]=>2
[4,2,1,2,5]=>2
[4,2,1,5,2]=>2
[4,2,2,1,5]=>2
[4,2,2,5,1]=>2
[4,2,5,1,2]=>2
[4,2,5,2,1]=>2
[4,5,1,2,2]=>2
[4,5,2,1,2]=>2
[4,5,2,2,1]=>2
[5,1,2,2,4]=>1
[5,1,2,4,2]=>1
[5,1,4,2,2]=>1
[5,2,1,2,4]=>1
[5,2,1,4,2]=>1
[5,2,2,1,4]=>1
[5,2,2,4,1]=>1
[5,2,4,1,2]=>1
[5,2,4,2,1]=>1
[5,4,1,2,2]=>1
[5,4,2,1,2]=>1
[5,4,2,2,1]=>1
[1,2,3,3,3]=>2
[1,3,2,3,3]=>1
[1,3,3,2,3]=>1
[1,3,3,3,2]=>1
[2,1,3,3,3]=>1
[2,3,1,3,3]=>1
[2,3,3,1,3]=>1
[2,3,3,3,1]=>1
[3,1,2,3,3]=>0
[3,1,3,2,3]=>0
[3,1,3,3,2]=>0
[3,2,1,3,3]=>0
[3,2,3,1,3]=>0
[3,2,3,3,1]=>0
[3,3,1,2,3]=>0
[3,3,1,3,2]=>0
[3,3,2,1,3]=>0
[3,3,2,3,1]=>0
[3,3,3,1,2]=>0
[3,3,3,2,1]=>0
[1,2,3,3,4]=>2
[1,2,3,4,3]=>2
[1,2,4,3,3]=>2
[1,3,2,3,4]=>1
[1,3,2,4,3]=>1
[1,3,3,2,4]=>1
[1,3,3,4,2]=>1
[1,3,4,2,3]=>1
[1,3,4,3,2]=>1
[1,4,2,3,3]=>1
[1,4,3,2,3]=>1
[1,4,3,3,2]=>1
[2,1,3,3,4]=>1
[2,1,3,4,3]=>1
[2,1,4,3,3]=>1
[2,3,1,3,4]=>1
[2,3,1,4,3]=>1
[2,3,3,1,4]=>1
[2,3,3,4,1]=>1
[2,3,4,1,3]=>1
[2,3,4,3,1]=>1
[2,4,1,3,3]=>1
[2,4,3,1,3]=>1
[2,4,3,3,1]=>1
[3,1,2,3,4]=>0
[3,1,2,4,3]=>0
[3,1,3,2,4]=>0
[3,1,3,4,2]=>0
[3,1,4,2,3]=>0
[3,1,4,3,2]=>0
[3,2,1,3,4]=>0
[3,2,1,4,3]=>0
[3,2,3,1,4]=>0
[3,2,3,4,1]=>0
[3,2,4,1,3]=>0
[3,2,4,3,1]=>0
[3,3,1,2,4]=>0
[3,3,1,4,2]=>0
[3,3,2,1,4]=>0
[3,3,2,4,1]=>0
[3,3,4,1,2]=>0
[3,3,4,2,1]=>0
[3,4,1,2,3]=>0
[3,4,1,3,2]=>0
[3,4,2,1,3]=>0
[3,4,2,3,1]=>0
[3,4,3,1,2]=>0
[3,4,3,2,1]=>0
[4,1,2,3,3]=>0
[4,1,3,2,3]=>0
[4,1,3,3,2]=>0
[4,2,1,3,3]=>0
[4,2,3,1,3]=>0
[4,2,3,3,1]=>0
[4,3,1,2,3]=>0
[4,3,1,3,2]=>0
[4,3,2,1,3]=>0
[4,3,2,3,1]=>0
[4,3,3,1,2]=>0
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of critical left to right maxima of the parking functions.
An entry $p$ in a parking function is critical, if there are exactly $p-1$ entries smaller than $p$ and $n-p$ entries larger than $p$. It is a left to right maximum, if there are no larger entries before it.
This statistic allows the computation of the Tutte polynomial of the complete graph $K_{n+1}$, via
$$ \sum_{P} x^{st(P)}y^{\binom{n+1}{2}-\sum P}, $$
where the sum is over all parking functions of length $n$, see [1, thm.13.5.16].
An entry $p$ in a parking function is critical, if there are exactly $p-1$ entries smaller than $p$ and $n-p$ entries larger than $p$. It is a left to right maximum, if there are no larger entries before it.
This statistic allows the computation of the Tutte polynomial of the complete graph $K_{n+1}$, via
$$ \sum_{P} x^{st(P)}y^{\binom{n+1}{2}-\sum P}, $$
where the sum is over all parking functions of length $n$, see [1, thm.13.5.16].
References
[1] Handbook of enumerative combinatorics MathSciNet:3408702
Code
def statistic(P): """ sage: R.= PolynomialRing(ZZ) sage: n=3; sum(x^statistic(P)*y^(binomial(len(P)+1,2)-sum(P)) for P in ParkingFunctions(n)) x^3 + y^3 + 3*x^2 + 4*x*y + 3*y^2 + 2*x + 2*y sage: G = graphs.CompleteGraph(n+1) sage: G.tutte_polynomial() x^3 + y^3 + 3*x^2 + 4*x*y + 3*y^2 + 2*x + 2*y """ return len([1 for i, j in enumerate(P) if ((i == 0 or max(P[:i]) < j) and len([1 for k in P if k < j]) == j-1 and len([1 for k in P if k > j]) == len(P)-j)])
Created
Aug 12, 2017 at 23:31 by Martin Rubey
Updated
Aug 12, 2017 at 23:31 by Martin Rubey
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!