edit this statistic or download as text // json
Identifier
Values
=>
Cc0005;cc-rep
[1,0]=>1 [1,0,1,0]=>2 [1,1,0,0]=>2 [1,0,1,0,1,0]=>1 [1,0,1,1,0,0]=>1 [1,1,0,0,1,0]=>1 [1,1,0,1,0,0]=>3 [1,1,1,0,0,0]=>1 [1,0,1,0,1,0,1,0]=>3 [1,0,1,0,1,1,0,0]=>3 [1,0,1,1,0,0,1,0]=>3 [1,0,1,1,0,1,0,0]=>2 [1,0,1,1,1,0,0,0]=>3 [1,1,0,0,1,0,1,0]=>3 [1,1,0,0,1,1,0,0]=>3 [1,1,0,1,0,0,1,0]=>2 [1,1,0,1,0,1,0,0]=>2 [1,1,0,1,1,0,0,0]=>2 [1,1,1,0,0,0,1,0]=>3 [1,1,1,0,0,1,0,0]=>2 [1,1,1,0,1,0,0,0]=>2 [1,1,1,1,0,0,0,0]=>3 [1,0,1,0,1,0,1,0,1,0]=>1 [1,0,1,0,1,0,1,1,0,0]=>1 [1,0,1,0,1,1,0,0,1,0]=>1 [1,0,1,0,1,1,0,1,0,0]=>3 [1,0,1,0,1,1,1,0,0,0]=>1 [1,0,1,1,0,0,1,0,1,0]=>1 [1,0,1,1,0,0,1,1,0,0]=>1 [1,0,1,1,0,1,0,0,1,0]=>2 [1,0,1,1,0,1,0,1,0,0]=>3 [1,0,1,1,0,1,1,0,0,0]=>2 [1,0,1,1,1,0,0,0,1,0]=>1 [1,0,1,1,1,0,0,1,0,0]=>3 [1,0,1,1,1,0,1,0,0,0]=>2 [1,0,1,1,1,1,0,0,0,0]=>1 [1,1,0,0,1,0,1,0,1,0]=>1 [1,1,0,0,1,0,1,1,0,0]=>1 [1,1,0,0,1,1,0,0,1,0]=>1 [1,1,0,0,1,1,0,1,0,0]=>3 [1,1,0,0,1,1,1,0,0,0]=>1 [1,1,0,1,0,0,1,0,1,0]=>3 [1,1,0,1,0,0,1,1,0,0]=>3 [1,1,0,1,0,1,0,0,1,0]=>3 [1,1,0,1,0,1,0,1,0,0]=>2 [1,1,0,1,0,1,1,0,0,0]=>3 [1,1,0,1,1,0,0,0,1,0]=>3 [1,1,0,1,1,0,0,1,0,0]=>5 [1,1,0,1,1,0,1,0,0,0]=>2 [1,1,0,1,1,1,0,0,0,0]=>3 [1,1,1,0,0,0,1,0,1,0]=>1 [1,1,1,0,0,0,1,1,0,0]=>1 [1,1,1,0,0,1,0,0,1,0]=>2 [1,1,1,0,0,1,0,1,0,0]=>3 [1,1,1,0,0,1,1,0,0,0]=>2 [1,1,1,0,1,0,0,0,1,0]=>2 [1,1,1,0,1,0,0,1,0,0]=>2 [1,1,1,0,1,0,1,0,0,0]=>2 [1,1,1,0,1,1,0,0,0,0]=>2 [1,1,1,1,0,0,0,0,1,0]=>1 [1,1,1,1,0,0,0,1,0,0]=>3 [1,1,1,1,0,0,1,0,0,0]=>2 [1,1,1,1,0,1,0,0,0,0]=>3 [1,1,1,1,1,0,0,0,0,0]=>1 [1,0,1,0,1,0,1,0,1,0,1,0]=>3 [1,0,1,0,1,0,1,0,1,1,0,0]=>3 [1,0,1,0,1,0,1,1,0,0,1,0]=>3 [1,0,1,0,1,0,1,1,0,1,0,0]=>3 [1,0,1,0,1,0,1,1,1,0,0,0]=>3 [1,0,1,0,1,1,0,0,1,0,1,0]=>3 [1,0,1,0,1,1,0,0,1,1,0,0]=>3 [1,0,1,0,1,1,0,1,0,0,1,0]=>2 [1,0,1,0,1,1,0,1,0,1,0,0]=>3 [1,0,1,0,1,1,0,1,1,0,0,0]=>2 [1,0,1,0,1,1,1,0,0,0,1,0]=>3 [1,0,1,0,1,1,1,0,0,1,0,0]=>3 [1,0,1,0,1,1,1,0,1,0,0,0]=>2 [1,0,1,0,1,1,1,1,0,0,0,0]=>3 [1,0,1,1,0,0,1,0,1,0,1,0]=>3 [1,0,1,1,0,0,1,0,1,1,0,0]=>3 [1,0,1,1,0,0,1,1,0,0,1,0]=>3 [1,0,1,1,0,0,1,1,0,1,0,0]=>3 [1,0,1,1,0,0,1,1,1,0,0,0]=>3 [1,0,1,1,0,1,0,0,1,0,1,0]=>2 [1,0,1,1,0,1,0,0,1,1,0,0]=>2 [1,0,1,1,0,1,0,1,0,0,1,0]=>3 [1,0,1,1,0,1,0,1,0,1,0,0]=>2 [1,0,1,1,0,1,0,1,1,0,0,0]=>3 [1,0,1,1,0,1,1,0,0,0,1,0]=>2 [1,0,1,1,0,1,1,0,0,1,0,0]=>2 [1,0,1,1,0,1,1,0,1,0,0,0]=>2 [1,0,1,1,0,1,1,1,0,0,0,0]=>2 [1,0,1,1,1,0,0,0,1,0,1,0]=>3 [1,0,1,1,1,0,0,0,1,1,0,0]=>3 [1,0,1,1,1,0,0,1,0,0,1,0]=>2 [1,0,1,1,1,0,0,1,0,1,0,0]=>3 [1,0,1,1,1,0,0,1,1,0,0,0]=>2 [1,0,1,1,1,0,1,0,0,0,1,0]=>5 [1,0,1,1,1,0,1,0,0,1,0,0]=>2 [1,0,1,1,1,0,1,0,1,0,0,0]=>2 [1,0,1,1,1,0,1,1,0,0,0,0]=>5 [1,0,1,1,1,1,0,0,0,0,1,0]=>3 [1,0,1,1,1,1,0,0,0,1,0,0]=>3 [1,0,1,1,1,1,0,0,1,0,0,0]=>2 [1,0,1,1,1,1,0,1,0,0,0,0]=>2 [1,0,1,1,1,1,1,0,0,0,0,0]=>3 [1,1,0,0,1,0,1,0,1,0,1,0]=>3 [1,1,0,0,1,0,1,0,1,1,0,0]=>3 [1,1,0,0,1,0,1,1,0,0,1,0]=>3 [1,1,0,0,1,0,1,1,0,1,0,0]=>3 [1,1,0,0,1,0,1,1,1,0,0,0]=>3 [1,1,0,0,1,1,0,0,1,0,1,0]=>3 [1,1,0,0,1,1,0,0,1,1,0,0]=>3 [1,1,0,0,1,1,0,1,0,0,1,0]=>2 [1,1,0,0,1,1,0,1,0,1,0,0]=>3 [1,1,0,0,1,1,0,1,1,0,0,0]=>2 [1,1,0,0,1,1,1,0,0,0,1,0]=>3 [1,1,0,0,1,1,1,0,0,1,0,0]=>3 [1,1,0,0,1,1,1,0,1,0,0,0]=>2 [1,1,0,0,1,1,1,1,0,0,0,0]=>3 [1,1,0,1,0,0,1,0,1,0,1,0]=>3 [1,1,0,1,0,0,1,0,1,1,0,0]=>3 [1,1,0,1,0,0,1,1,0,0,1,0]=>3 [1,1,0,1,0,0,1,1,0,1,0,0]=>6 [1,1,0,1,0,0,1,1,1,0,0,0]=>3 [1,1,0,1,0,1,0,0,1,0,1,0]=>3 [1,1,0,1,0,1,0,0,1,1,0,0]=>3 [1,1,0,1,0,1,0,1,0,0,1,0]=>2 [1,1,0,1,0,1,0,1,0,1,0,0]=>2 [1,1,0,1,0,1,0,1,1,0,0,0]=>2 [1,1,0,1,0,1,1,0,0,0,1,0]=>3 [1,1,0,1,0,1,1,0,0,1,0,0]=>6 [1,1,0,1,0,1,1,0,1,0,0,0]=>2 [1,1,0,1,0,1,1,1,0,0,0,0]=>3 [1,1,0,1,1,0,0,0,1,0,1,0]=>3 [1,1,0,1,1,0,0,0,1,1,0,0]=>3 [1,1,0,1,1,0,0,1,0,0,1,0]=>2 [1,1,0,1,1,0,0,1,0,1,0,0]=>6 [1,1,0,1,1,0,0,1,1,0,0,0]=>2 [1,1,0,1,1,0,1,0,0,0,1,0]=>2 [1,1,0,1,1,0,1,0,0,1,0,0]=>2 [1,1,0,1,1,0,1,0,1,0,0,0]=>5 [1,1,0,1,1,0,1,1,0,0,0,0]=>2 [1,1,0,1,1,1,0,0,0,0,1,0]=>3 [1,1,0,1,1,1,0,0,0,1,0,0]=>6 [1,1,0,1,1,1,0,0,1,0,0,0]=>2 [1,1,0,1,1,1,0,1,0,0,0,0]=>2 [1,1,0,1,1,1,1,0,0,0,0,0]=>3 [1,1,1,0,0,0,1,0,1,0,1,0]=>3 [1,1,1,0,0,0,1,0,1,1,0,0]=>3 [1,1,1,0,0,0,1,1,0,0,1,0]=>3 [1,1,1,0,0,0,1,1,0,1,0,0]=>3 [1,1,1,0,0,0,1,1,1,0,0,0]=>3 [1,1,1,0,0,1,0,0,1,0,1,0]=>2 [1,1,1,0,0,1,0,0,1,1,0,0]=>2 [1,1,1,0,0,1,0,1,0,0,1,0]=>3 [1,1,1,0,0,1,0,1,0,1,0,0]=>2 [1,1,1,0,0,1,0,1,1,0,0,0]=>3 [1,1,1,0,0,1,1,0,0,0,1,0]=>2 [1,1,1,0,0,1,1,0,0,1,0,0]=>2 [1,1,1,0,0,1,1,0,1,0,0,0]=>2 [1,1,1,0,0,1,1,1,0,0,0,0]=>2 [1,1,1,0,1,0,0,0,1,0,1,0]=>2 [1,1,1,0,1,0,0,0,1,1,0,0]=>2 [1,1,1,0,1,0,0,1,0,0,1,0]=>2 [1,1,1,0,1,0,0,1,0,1,0,0]=>2 [1,1,1,0,1,0,0,1,1,0,0,0]=>2 [1,1,1,0,1,0,1,0,0,0,1,0]=>2 [1,1,1,0,1,0,1,0,0,1,0,0]=>5 [1,1,1,0,1,0,1,0,1,0,0,0]=>2 [1,1,1,0,1,0,1,1,0,0,0,0]=>2 [1,1,1,0,1,1,0,0,0,0,1,0]=>2 [1,1,1,0,1,1,0,0,0,1,0,0]=>2 [1,1,1,0,1,1,0,0,1,0,0,0]=>5 [1,1,1,0,1,1,0,1,0,0,0,0]=>2 [1,1,1,0,1,1,1,0,0,0,0,0]=>2 [1,1,1,1,0,0,0,0,1,0,1,0]=>3 [1,1,1,1,0,0,0,0,1,1,0,0]=>3 [1,1,1,1,0,0,0,1,0,0,1,0]=>2 [1,1,1,1,0,0,0,1,0,1,0,0]=>3 [1,1,1,1,0,0,0,1,1,0,0,0]=>2 [1,1,1,1,0,0,1,0,0,0,1,0]=>5 [1,1,1,1,0,0,1,0,0,1,0,0]=>2 [1,1,1,1,0,0,1,0,1,0,0,0]=>2 [1,1,1,1,0,0,1,1,0,0,0,0]=>5 [1,1,1,1,0,1,0,0,0,0,1,0]=>2 [1,1,1,1,0,1,0,0,0,1,0,0]=>2 [1,1,1,1,0,1,0,0,1,0,0,0]=>2 [1,1,1,1,0,1,0,1,0,0,0,0]=>2 [1,1,1,1,0,1,1,0,0,0,0,0]=>2 [1,1,1,1,1,0,0,0,0,0,1,0]=>3 [1,1,1,1,1,0,0,0,0,1,0,0]=>3 [1,1,1,1,1,0,0,0,1,0,0,0]=>2 [1,1,1,1,1,0,0,1,0,0,0,0]=>2 [1,1,1,1,1,0,1,0,0,0,0,0]=>3 [1,1,1,1,1,1,0,0,0,0,0,0]=>3
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
Gives the number of irreducible factors of the Coxeter polynomial of the Dyck path over the rational numbers.
Here the Coxeter polynomial is by definition the Coxeter polynomial of the corresponding LNakayama algebra.
Code
For example for algebras with 7 simples:
z:=7;R:=BuildSequencesLNak(z);temp:=[];for i in R do Append(temp,[[i,Size(Factors(CoxeterPolynomial(NakayamaAlgebra(i,GF(3)))))]]);od;temp;

The bijection between Kupisch series of LNakayama algebras and Dyck paths in SAGE is due to Christian Stump and given by (in an example):

sage: def seq_to_Dyckpath(seq):
....:     return DyckWords().from_area_sequence([ i-2 for i in
reversed(seq) ][1:])

sage: X = [ [ [ 2, 2, 2, 1 ], 3 ], [ [ 3, 2, 2, 1 ], 2 ], [ [ 2, 3, 2,
1 ], 2 ], [ [ 3, 3, 2, 1 ], 2 ], [ [ 4, 3, 2, 1 ], 1 ] ]
sage: for seq,val in X:
....:     D = seq_to_Dyckpath(seq)
....:     print list(D), "=>", val
Created
Aug 25, 2017 at 15:13 by Rene Marczinzik
Updated
Aug 25, 2017 at 15:13 by Rene Marczinzik