Identifier
- St000967: Dyck paths ⟶ ℤ
Values
=>
Cc0005;cc-rep
[1,0]=>3
[1,0,1,0]=>4
[1,1,0,0]=>4
[1,0,1,0,1,0]=>5
[1,0,1,1,0,0]=>5
[1,1,0,0,1,0]=>5
[1,1,0,1,0,0]=>4
[1,1,1,0,0,0]=>5
[1,0,1,0,1,0,1,0]=>6
[1,0,1,0,1,1,0,0]=>6
[1,0,1,1,0,0,1,0]=>6
[1,0,1,1,0,1,0,0]=>4
[1,0,1,1,1,0,0,0]=>6
[1,1,0,0,1,0,1,0]=>6
[1,1,0,0,1,1,0,0]=>6
[1,1,0,1,0,0,1,0]=>4
[1,1,0,1,0,1,0,0]=>4
[1,1,0,1,1,0,0,0]=>4
[1,1,1,0,0,0,1,0]=>6
[1,1,1,0,0,1,0,0]=>4
[1,1,1,0,1,0,0,0]=>4
[1,1,1,1,0,0,0,0]=>6
[1,0,1,0,1,0,1,0,1,0]=>7
[1,0,1,0,1,0,1,1,0,0]=>7
[1,0,1,0,1,1,0,0,1,0]=>7
[1,0,1,0,1,1,0,1,0,0]=>4
[1,0,1,0,1,1,1,0,0,0]=>7
[1,0,1,1,0,0,1,0,1,0]=>7
[1,0,1,1,0,0,1,1,0,0]=>7
[1,0,1,1,0,1,0,0,1,0]=>3
[1,0,1,1,0,1,0,1,0,0]=>4
[1,0,1,1,0,1,1,0,0,0]=>3
[1,0,1,1,1,0,0,0,1,0]=>7
[1,0,1,1,1,0,0,1,0,0]=>4
[1,0,1,1,1,0,1,0,0,0]=>3
[1,0,1,1,1,1,0,0,0,0]=>7
[1,1,0,0,1,0,1,0,1,0]=>7
[1,1,0,0,1,0,1,1,0,0]=>7
[1,1,0,0,1,1,0,0,1,0]=>7
[1,1,0,0,1,1,0,1,0,0]=>4
[1,1,0,0,1,1,1,0,0,0]=>7
[1,1,0,1,0,0,1,0,1,0]=>4
[1,1,0,1,0,0,1,1,0,0]=>4
[1,1,0,1,0,1,0,0,1,0]=>4
[1,1,0,1,0,1,0,1,0,0]=>3
[1,1,0,1,0,1,1,0,0,0]=>4
[1,1,0,1,1,0,0,0,1,0]=>4
[1,1,0,1,1,0,0,1,0,0]=>0
[1,1,0,1,1,0,1,0,0,0]=>3
[1,1,0,1,1,1,0,0,0,0]=>4
[1,1,1,0,0,0,1,0,1,0]=>7
[1,1,1,0,0,0,1,1,0,0]=>7
[1,1,1,0,0,1,0,0,1,0]=>3
[1,1,1,0,0,1,0,1,0,0]=>4
[1,1,1,0,0,1,1,0,0,0]=>3
[1,1,1,0,1,0,0,0,1,0]=>3
[1,1,1,0,1,0,0,1,0,0]=>3
[1,1,1,0,1,0,1,0,0,0]=>3
[1,1,1,0,1,1,0,0,0,0]=>3
[1,1,1,1,0,0,0,0,1,0]=>7
[1,1,1,1,0,0,0,1,0,0]=>4
[1,1,1,1,0,0,1,0,0,0]=>3
[1,1,1,1,0,1,0,0,0,0]=>4
[1,1,1,1,1,0,0,0,0,0]=>7
[1,0,1,0,1,0,1,0,1,0,1,0]=>8
[1,0,1,0,1,0,1,0,1,1,0,0]=>8
[1,0,1,0,1,0,1,1,0,0,1,0]=>8
[1,0,1,0,1,0,1,1,0,1,0,0]=>4
[1,0,1,0,1,0,1,1,1,0,0,0]=>8
[1,0,1,0,1,1,0,0,1,0,1,0]=>8
[1,0,1,0,1,1,0,0,1,1,0,0]=>8
[1,0,1,0,1,1,0,1,0,0,1,0]=>2
[1,0,1,0,1,1,0,1,0,1,0,0]=>4
[1,0,1,0,1,1,0,1,1,0,0,0]=>2
[1,0,1,0,1,1,1,0,0,0,1,0]=>8
[1,0,1,0,1,1,1,0,0,1,0,0]=>4
[1,0,1,0,1,1,1,0,1,0,0,0]=>2
[1,0,1,0,1,1,1,1,0,0,0,0]=>8
[1,0,1,1,0,0,1,0,1,0,1,0]=>8
[1,0,1,1,0,0,1,0,1,1,0,0]=>8
[1,0,1,1,0,0,1,1,0,0,1,0]=>8
[1,0,1,1,0,0,1,1,0,1,0,0]=>4
[1,0,1,1,0,0,1,1,1,0,0,0]=>8
[1,0,1,1,0,1,0,0,1,0,1,0]=>2
[1,0,1,1,0,1,0,0,1,1,0,0]=>2
[1,0,1,1,0,1,0,1,0,0,1,0]=>4
[1,0,1,1,0,1,0,1,0,1,0,0]=>2
[1,0,1,1,0,1,0,1,1,0,0,0]=>4
[1,0,1,1,0,1,1,0,0,0,1,0]=>2
[1,0,1,1,0,1,1,0,0,1,0,0]=>-4
[1,0,1,1,0,1,1,0,1,0,0,0]=>2
[1,0,1,1,0,1,1,1,0,0,0,0]=>2
[1,0,1,1,1,0,0,0,1,0,1,0]=>8
[1,0,1,1,1,0,0,0,1,1,0,0]=>8
[1,0,1,1,1,0,0,1,0,0,1,0]=>2
[1,0,1,1,1,0,0,1,0,1,0,0]=>4
[1,0,1,1,1,0,0,1,1,0,0,0]=>2
[1,0,1,1,1,0,1,0,0,0,1,0]=>0
[1,0,1,1,1,0,1,0,0,1,0,0]=>2
[1,0,1,1,1,0,1,0,1,0,0,0]=>2
[1,0,1,1,1,0,1,1,0,0,0,0]=>0
[1,0,1,1,1,1,0,0,0,0,1,0]=>8
[1,0,1,1,1,1,0,0,0,1,0,0]=>4
[1,0,1,1,1,1,0,0,1,0,0,0]=>2
[1,0,1,1,1,1,0,1,0,0,0,0]=>2
[1,0,1,1,1,1,1,0,0,0,0,0]=>8
[1,1,0,0,1,0,1,0,1,0,1,0]=>8
[1,1,0,0,1,0,1,0,1,1,0,0]=>8
[1,1,0,0,1,0,1,1,0,0,1,0]=>8
[1,1,0,0,1,0,1,1,0,1,0,0]=>4
[1,1,0,0,1,0,1,1,1,0,0,0]=>8
[1,1,0,0,1,1,0,0,1,0,1,0]=>8
[1,1,0,0,1,1,0,0,1,1,0,0]=>8
[1,1,0,0,1,1,0,1,0,0,1,0]=>2
[1,1,0,0,1,1,0,1,0,1,0,0]=>4
[1,1,0,0,1,1,0,1,1,0,0,0]=>2
[1,1,0,0,1,1,1,0,0,0,1,0]=>8
[1,1,0,0,1,1,1,0,0,1,0,0]=>4
[1,1,0,0,1,1,1,0,1,0,0,0]=>2
[1,1,0,0,1,1,1,1,0,0,0,0]=>8
[1,1,0,1,0,0,1,0,1,0,1,0]=>4
[1,1,0,1,0,0,1,0,1,1,0,0]=>4
[1,1,0,1,0,0,1,1,0,0,1,0]=>4
[1,1,0,1,0,0,1,1,0,1,0,0]=>0
[1,1,0,1,0,0,1,1,1,0,0,0]=>4
[1,1,0,1,0,1,0,0,1,0,1,0]=>4
[1,1,0,1,0,1,0,0,1,1,0,0]=>4
[1,1,0,1,0,1,0,1,0,0,1,0]=>2
[1,1,0,1,0,1,0,1,0,1,0,0]=>2
[1,1,0,1,0,1,0,1,1,0,0,0]=>2
[1,1,0,1,0,1,1,0,0,0,1,0]=>4
[1,1,0,1,0,1,1,0,0,1,0,0]=>0
[1,1,0,1,0,1,1,0,1,0,0,0]=>2
[1,1,0,1,0,1,1,1,0,0,0,0]=>4
[1,1,0,1,1,0,0,0,1,0,1,0]=>4
[1,1,0,1,1,0,0,0,1,1,0,0]=>4
[1,1,0,1,1,0,0,1,0,0,1,0]=>-4
[1,1,0,1,1,0,0,1,0,1,0,0]=>0
[1,1,0,1,1,0,0,1,1,0,0,0]=>-4
[1,1,0,1,1,0,1,0,0,0,1,0]=>2
[1,1,0,1,1,0,1,0,0,1,0,0]=>2
[1,1,0,1,1,0,1,0,1,0,0,0]=>0
[1,1,0,1,1,0,1,1,0,0,0,0]=>2
[1,1,0,1,1,1,0,0,0,0,1,0]=>4
[1,1,0,1,1,1,0,0,0,1,0,0]=>0
[1,1,0,1,1,1,0,0,1,0,0,0]=>-4
[1,1,0,1,1,1,0,1,0,0,0,0]=>2
[1,1,0,1,1,1,1,0,0,0,0,0]=>4
[1,1,1,0,0,0,1,0,1,0,1,0]=>8
[1,1,1,0,0,0,1,0,1,1,0,0]=>8
[1,1,1,0,0,0,1,1,0,0,1,0]=>8
[1,1,1,0,0,0,1,1,0,1,0,0]=>4
[1,1,1,0,0,0,1,1,1,0,0,0]=>8
[1,1,1,0,0,1,0,0,1,0,1,0]=>2
[1,1,1,0,0,1,0,0,1,1,0,0]=>2
[1,1,1,0,0,1,0,1,0,0,1,0]=>4
[1,1,1,0,0,1,0,1,0,1,0,0]=>2
[1,1,1,0,0,1,0,1,1,0,0,0]=>4
[1,1,1,0,0,1,1,0,0,0,1,0]=>2
[1,1,1,0,0,1,1,0,0,1,0,0]=>-4
[1,1,1,0,0,1,1,0,1,0,0,0]=>2
[1,1,1,0,0,1,1,1,0,0,0,0]=>2
[1,1,1,0,1,0,0,0,1,0,1,0]=>2
[1,1,1,0,1,0,0,0,1,1,0,0]=>2
[1,1,1,0,1,0,0,1,0,0,1,0]=>2
[1,1,1,0,1,0,0,1,0,1,0,0]=>2
[1,1,1,0,1,0,0,1,1,0,0,0]=>2
[1,1,1,0,1,0,1,0,0,0,1,0]=>2
[1,1,1,0,1,0,1,0,0,1,0,0]=>0
[1,1,1,0,1,0,1,0,1,0,0,0]=>2
[1,1,1,0,1,0,1,1,0,0,0,0]=>2
[1,1,1,0,1,1,0,0,0,0,1,0]=>2
[1,1,1,0,1,1,0,0,0,1,0,0]=>-4
[1,1,1,0,1,1,0,0,1,0,0,0]=>0
[1,1,1,0,1,1,0,1,0,0,0,0]=>2
[1,1,1,0,1,1,1,0,0,0,0,0]=>2
[1,1,1,1,0,0,0,0,1,0,1,0]=>8
[1,1,1,1,0,0,0,0,1,1,0,0]=>8
[1,1,1,1,0,0,0,1,0,0,1,0]=>2
[1,1,1,1,0,0,0,1,0,1,0,0]=>4
[1,1,1,1,0,0,0,1,1,0,0,0]=>2
[1,1,1,1,0,0,1,0,0,0,1,0]=>0
[1,1,1,1,0,0,1,0,0,1,0,0]=>2
[1,1,1,1,0,0,1,0,1,0,0,0]=>2
[1,1,1,1,0,0,1,1,0,0,0,0]=>0
[1,1,1,1,0,1,0,0,0,0,1,0]=>2
[1,1,1,1,0,1,0,0,0,1,0,0]=>2
[1,1,1,1,0,1,0,0,1,0,0,0]=>2
[1,1,1,1,0,1,0,1,0,0,0,0]=>2
[1,1,1,1,0,1,1,0,0,0,0,0]=>2
[1,1,1,1,1,0,0,0,0,0,1,0]=>8
[1,1,1,1,1,0,0,0,0,1,0,0]=>4
[1,1,1,1,1,0,0,0,1,0,0,0]=>2
[1,1,1,1,1,0,0,1,0,0,0,0]=>2
[1,1,1,1,1,0,1,0,0,0,0,0]=>4
[1,1,1,1,1,1,0,0,0,0,0,0]=>8
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The value p(1) for the Coxeterpolynomial p of the corresponding LNakayama algebra.
References
[1] de la Peña, José A. Algebras whose Coxeter polynomials are products of cyclotomic polynomials MathSciNet:3254775 DOI:10.1007/s10468-013-9424-0
Code
z:=7;R:=BuildSequencesLNak(z);temp:=[];for i in R do Append(temp,[[i,Value(CoxeterPolynomial(NakayamaAlgebra(i,GF(3))),1)]]);od;temp;
Created
Sep 03, 2017 at 14:16 by Rene Marczinzik
Updated
Sep 03, 2017 at 14:49 by Martin Rubey
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!