edit this statistic or download as text // json
Identifier
Values
=>
Cc0005;cc-rep
[1,0]=>1 [1,0,1,0]=>1 [1,1,0,0]=>3 [1,0,1,0,1,0]=>1 [1,0,1,1,0,0]=>2 [1,1,0,0,1,0]=>1 [1,1,0,1,0,0]=>2 [1,1,1,0,0,0]=>6 [1,0,1,0,1,0,1,0]=>1 [1,0,1,0,1,1,0,0]=>2 [1,0,1,1,0,0,1,0]=>3 [1,0,1,1,0,1,0,0]=>2 [1,0,1,1,1,0,0,0]=>3 [1,1,0,0,1,0,1,0]=>1 [1,1,0,0,1,1,0,0]=>2 [1,1,0,1,0,0,1,0]=>1 [1,1,0,1,0,1,0,0]=>1 [1,1,0,1,1,0,0,0]=>4 [1,1,1,0,0,0,1,0]=>1 [1,1,1,0,0,1,0,0]=>2 [1,1,1,0,1,0,0,0]=>3 [1,1,1,1,0,0,0,0]=>10 [1,0,1,0,1,0,1,0,1,0]=>1 [1,0,1,0,1,0,1,1,0,0]=>2 [1,0,1,0,1,1,0,0,1,0]=>2 [1,0,1,0,1,1,0,1,0,0]=>2 [1,0,1,0,1,1,1,0,0,0]=>3 [1,0,1,1,0,0,1,0,1,0]=>1 [1,0,1,1,0,0,1,1,0,0]=>4 [1,0,1,1,0,1,0,0,1,0]=>1 [1,0,1,1,0,1,0,1,0,0]=>1 [1,0,1,1,0,1,1,0,0,0]=>4 [1,0,1,1,1,0,0,0,1,0]=>4 [1,0,1,1,1,0,0,1,0,0]=>5 [1,0,1,1,1,0,1,0,0,0]=>3 [1,0,1,1,1,1,0,0,0,0]=>4 [1,1,0,0,1,0,1,0,1,0]=>1 [1,1,0,0,1,0,1,1,0,0]=>2 [1,1,0,0,1,1,0,0,1,0]=>3 [1,1,0,0,1,1,0,1,0,0]=>2 [1,1,0,0,1,1,1,0,0,0]=>3 [1,1,0,1,0,0,1,0,1,0]=>1 [1,1,0,1,0,0,1,1,0,0]=>2 [1,1,0,1,0,1,0,0,1,0]=>1 [1,1,0,1,0,1,0,1,0,0]=>3 [1,1,0,1,0,1,1,0,0,0]=>2 [1,1,0,1,1,0,0,0,1,0]=>5 [1,1,0,1,1,0,0,1,0,0]=>2 [1,1,0,1,1,0,1,0,0,0]=>2 [1,1,0,1,1,1,0,0,0,0]=>6 [1,1,1,0,0,0,1,0,1,0]=>1 [1,1,1,0,0,0,1,1,0,0]=>2 [1,1,1,0,0,1,0,0,1,0]=>1 [1,1,1,0,0,1,0,1,0,0]=>1 [1,1,1,0,0,1,1,0,0,0]=>4 [1,1,1,0,1,0,0,0,1,0]=>1 [1,1,1,0,1,0,0,1,0,0]=>1 [1,1,1,0,1,0,1,0,0,0]=>1 [1,1,1,0,1,1,0,0,0,0]=>6 [1,1,1,1,0,0,0,0,1,0]=>1 [1,1,1,1,0,0,0,1,0,0]=>2 [1,1,1,1,0,0,1,0,0,0]=>3 [1,1,1,1,0,1,0,0,0,0]=>4 [1,1,1,1,1,0,0,0,0,0]=>15
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
Number of indecomposable modules with projective dimension equal to the global dimension in the Nakayama algebra corresponding to the Dyck path.
Code
DeclareOperation("numbersprojdimg", [IsList]);

InstallMethod(numbersprojdimg, "for a representation of a quiver", [IsList],0,function(L)


local list, n, temp1, Liste_d, j, i, k, r, kk;


list:=L;

A:=NakayamaAlgebra(GF(3),list);
g:=gldim(list);
L:=ARQuiver([A,1000])[2];
LL:=Filtered(L,x->ProjDimensionOfModule(x,g)=g);
return(Size(LL));
end
);
Created
Oct 27, 2017 at 21:00 by Rene Marczinzik
Updated
Oct 29, 2017 at 15:37 by Martin Rubey