edit this statistic or download as text // json
Identifier
Values
=>
Cc0005;cc-rep
[1,0]=>1 [1,0,1,0]=>1 [1,1,0,0]=>2 [1,0,1,0,1,0]=>1 [1,0,1,1,0,0]=>1 [1,1,0,0,1,0]=>1 [1,1,0,1,0,0]=>1 [1,1,1,0,0,0]=>3 [1,0,1,0,1,0,1,0]=>1 [1,0,1,0,1,1,0,0]=>1 [1,0,1,1,0,0,1,0]=>2 [1,0,1,1,0,1,0,0]=>1 [1,0,1,1,1,0,0,0]=>1 [1,1,0,0,1,0,1,0]=>1 [1,1,0,0,1,1,0,0]=>1 [1,1,0,1,0,0,1,0]=>1 [1,1,0,1,0,1,0,0]=>1 [1,1,0,1,1,0,0,0]=>1 [1,1,1,0,0,0,1,0]=>1 [1,1,1,0,0,1,0,0]=>1 [1,1,1,0,1,0,0,0]=>1 [1,1,1,1,0,0,0,0]=>4 [1,0,1,0,1,0,1,0,1,0]=>1 [1,0,1,0,1,0,1,1,0,0]=>1 [1,0,1,0,1,1,0,0,1,0]=>1 [1,0,1,0,1,1,0,1,0,0]=>1 [1,0,1,0,1,1,1,0,0,0]=>1 [1,0,1,1,0,0,1,0,1,0]=>1 [1,0,1,1,0,0,1,1,0,0]=>2 [1,0,1,1,0,1,0,0,1,0]=>1 [1,0,1,1,0,1,0,1,0,0]=>1 [1,0,1,1,0,1,1,0,0,0]=>1 [1,0,1,1,1,0,0,0,1,0]=>2 [1,0,1,1,1,0,0,1,0,0]=>2 [1,0,1,1,1,0,1,0,0,0]=>1 [1,0,1,1,1,1,0,0,0,0]=>1 [1,1,0,0,1,0,1,0,1,0]=>1 [1,1,0,0,1,0,1,1,0,0]=>1 [1,1,0,0,1,1,0,0,1,0]=>2 [1,1,0,0,1,1,0,1,0,0]=>1 [1,1,0,0,1,1,1,0,0,0]=>1 [1,1,0,1,0,0,1,0,1,0]=>1 [1,1,0,1,0,0,1,1,0,0]=>1 [1,1,0,1,0,1,0,0,1,0]=>1 [1,1,0,1,0,1,0,1,0,0]=>2 [1,1,0,1,0,1,1,0,0,0]=>1 [1,1,0,1,1,0,0,0,1,0]=>2 [1,1,0,1,1,0,0,1,0,0]=>1 [1,1,0,1,1,0,1,0,0,0]=>1 [1,1,0,1,1,1,0,0,0,0]=>1 [1,1,1,0,0,0,1,0,1,0]=>1 [1,1,1,0,0,0,1,1,0,0]=>1 [1,1,1,0,0,1,0,0,1,0]=>1 [1,1,1,0,0,1,0,1,0,0]=>1 [1,1,1,0,0,1,1,0,0,0]=>1 [1,1,1,0,1,0,0,0,1,0]=>1 [1,1,1,0,1,0,0,1,0,0]=>1 [1,1,1,0,1,0,1,0,0,0]=>1 [1,1,1,0,1,1,0,0,0,0]=>1 [1,1,1,1,0,0,0,0,1,0]=>1 [1,1,1,1,0,0,0,1,0,0]=>1 [1,1,1,1,0,0,1,0,0,0]=>1 [1,1,1,1,0,1,0,0,0,0]=>1 [1,1,1,1,1,0,0,0,0,0]=>5 [1,0,1,0,1,0,1,0,1,0,1,0]=>1 [1,0,1,0,1,0,1,0,1,1,0,0]=>1 [1,0,1,0,1,0,1,1,0,0,1,0]=>1 [1,0,1,0,1,0,1,1,0,1,0,0]=>1 [1,0,1,0,1,0,1,1,1,0,0,0]=>1 [1,0,1,0,1,1,0,0,1,0,1,0]=>2 [1,0,1,0,1,1,0,0,1,1,0,0]=>1 [1,0,1,0,1,1,0,1,0,0,1,0]=>1 [1,0,1,0,1,1,0,1,0,1,0,0]=>1 [1,0,1,0,1,1,0,1,1,0,0,0]=>1 [1,0,1,0,1,1,1,0,0,0,1,0]=>1 [1,0,1,0,1,1,1,0,0,1,0,0]=>1 [1,0,1,0,1,1,1,0,1,0,0,0]=>1 [1,0,1,0,1,1,1,1,0,0,0,0]=>1 [1,0,1,1,0,0,1,0,1,0,1,0]=>1 [1,0,1,1,0,0,1,0,1,1,0,0]=>1 [1,0,1,1,0,0,1,1,0,0,1,0]=>3 [1,0,1,1,0,0,1,1,0,1,0,0]=>1 [1,0,1,1,0,0,1,1,1,0,0,0]=>2 [1,0,1,1,0,1,0,0,1,0,1,0]=>1 [1,0,1,1,0,1,0,0,1,1,0,0]=>1 [1,0,1,1,0,1,0,1,0,0,1,0]=>1 [1,0,1,1,0,1,0,1,0,1,0,0]=>1 [1,0,1,1,0,1,0,1,1,0,0,0]=>1 [1,0,1,1,0,1,1,0,0,0,1,0]=>1 [1,0,1,1,0,1,1,0,0,1,0,0]=>1 [1,0,1,1,0,1,1,0,1,0,0,0]=>1 [1,0,1,1,0,1,1,1,0,0,0,0]=>1 [1,0,1,1,1,0,0,0,1,0,1,0]=>1 [1,0,1,1,1,0,0,0,1,1,0,0]=>2 [1,0,1,1,1,0,0,1,0,0,1,0]=>1 [1,0,1,1,1,0,0,1,0,1,0,0]=>1 [1,0,1,1,1,0,0,1,1,0,0,0]=>2 [1,0,1,1,1,0,1,0,0,0,1,0]=>1 [1,0,1,1,1,0,1,0,0,1,0,0]=>1 [1,0,1,1,1,0,1,0,1,0,0,0]=>1 [1,0,1,1,1,0,1,1,0,0,0,0]=>1 [1,0,1,1,1,1,0,0,0,0,1,0]=>2 [1,0,1,1,1,1,0,0,0,1,0,0]=>2 [1,0,1,1,1,1,0,0,1,0,0,0]=>2 [1,0,1,1,1,1,0,1,0,0,0,0]=>1 [1,0,1,1,1,1,1,0,0,0,0,0]=>1 [1,1,0,0,1,0,1,0,1,0,1,0]=>1 [1,1,0,0,1,0,1,0,1,1,0,0]=>1 [1,1,0,0,1,0,1,1,0,0,1,0]=>1 [1,1,0,0,1,0,1,1,0,1,0,0]=>1 [1,1,0,0,1,0,1,1,1,0,0,0]=>1 [1,1,0,0,1,1,0,0,1,0,1,0]=>1 [1,1,0,0,1,1,0,0,1,1,0,0]=>2 [1,1,0,0,1,1,0,1,0,0,1,0]=>1 [1,1,0,0,1,1,0,1,0,1,0,0]=>1 [1,1,0,0,1,1,0,1,1,0,0,0]=>1 [1,1,0,0,1,1,1,0,0,0,1,0]=>2 [1,1,0,0,1,1,1,0,0,1,0,0]=>2 [1,1,0,0,1,1,1,0,1,0,0,0]=>1 [1,1,0,0,1,1,1,1,0,0,0,0]=>1 [1,1,0,1,0,0,1,0,1,0,1,0]=>1 [1,1,0,1,0,0,1,0,1,1,0,0]=>1 [1,1,0,1,0,0,1,1,0,0,1,0]=>1 [1,1,0,1,0,0,1,1,0,1,0,0]=>1 [1,1,0,1,0,0,1,1,1,0,0,0]=>1 [1,1,0,1,0,1,0,0,1,0,1,0]=>1 [1,1,0,1,0,1,0,0,1,1,0,0]=>1 [1,1,0,1,0,1,0,1,0,0,1,0]=>1 [1,1,0,1,0,1,0,1,0,1,0,0]=>1 [1,1,0,1,0,1,0,1,1,0,0,0]=>2 [1,1,0,1,0,1,1,0,0,0,1,0]=>1 [1,1,0,1,0,1,1,0,0,1,0,0]=>1 [1,1,0,1,0,1,1,0,1,0,0,0]=>2 [1,1,0,1,0,1,1,1,0,0,0,0]=>1 [1,1,0,1,1,0,0,0,1,0,1,0]=>1 [1,1,0,1,1,0,0,0,1,1,0,0]=>2 [1,1,0,1,1,0,0,1,0,0,1,0]=>1 [1,1,0,1,1,0,0,1,0,1,0,0]=>1 [1,1,0,1,1,0,0,1,1,0,0,0]=>1 [1,1,0,1,1,0,1,0,0,0,1,0]=>1 [1,1,0,1,1,0,1,0,0,1,0,0]=>1 [1,1,0,1,1,0,1,0,1,0,0,0]=>2 [1,1,0,1,1,0,1,1,0,0,0,0]=>1 [1,1,0,1,1,1,0,0,0,0,1,0]=>2 [1,1,0,1,1,1,0,0,0,1,0,0]=>2 [1,1,0,1,1,1,0,0,1,0,0,0]=>1 [1,1,0,1,1,1,0,1,0,0,0,0]=>1 [1,1,0,1,1,1,1,0,0,0,0,0]=>1 [1,1,1,0,0,0,1,0,1,0,1,0]=>1 [1,1,1,0,0,0,1,0,1,1,0,0]=>1 [1,1,1,0,0,0,1,1,0,0,1,0]=>2 [1,1,1,0,0,0,1,1,0,1,0,0]=>1 [1,1,1,0,0,0,1,1,1,0,0,0]=>1 [1,1,1,0,0,1,0,0,1,0,1,0]=>1 [1,1,1,0,0,1,0,0,1,1,0,0]=>1 [1,1,1,0,0,1,0,1,0,0,1,0]=>1 [1,1,1,0,0,1,0,1,0,1,0,0]=>2 [1,1,1,0,0,1,0,1,1,0,0,0]=>1 [1,1,1,0,0,1,1,0,0,0,1,0]=>2 [1,1,1,0,0,1,1,0,0,1,0,0]=>1 [1,1,1,0,0,1,1,0,1,0,0,0]=>1 [1,1,1,0,0,1,1,1,0,0,0,0]=>1 [1,1,1,0,1,0,0,0,1,0,1,0]=>1 [1,1,1,0,1,0,0,0,1,1,0,0]=>1 [1,1,1,0,1,0,0,1,0,0,1,0]=>1 [1,1,1,0,1,0,0,1,0,1,0,0]=>2 [1,1,1,0,1,0,0,1,1,0,0,0]=>1 [1,1,1,0,1,0,1,0,0,0,1,0]=>1 [1,1,1,0,1,0,1,0,0,1,0,0]=>2 [1,1,1,0,1,0,1,0,1,0,0,0]=>2 [1,1,1,0,1,0,1,1,0,0,0,0]=>1 [1,1,1,0,1,1,0,0,0,0,1,0]=>2 [1,1,1,0,1,1,0,0,0,1,0,0]=>1 [1,1,1,0,1,1,0,0,1,0,0,0]=>1 [1,1,1,0,1,1,0,1,0,0,0,0]=>1 [1,1,1,0,1,1,1,0,0,0,0,0]=>1 [1,1,1,1,0,0,0,0,1,0,1,0]=>1 [1,1,1,1,0,0,0,0,1,1,0,0]=>1 [1,1,1,1,0,0,0,1,0,0,1,0]=>1 [1,1,1,1,0,0,0,1,0,1,0,0]=>1 [1,1,1,1,0,0,0,1,1,0,0,0]=>1 [1,1,1,1,0,0,1,0,0,0,1,0]=>1 [1,1,1,1,0,0,1,0,0,1,0,0]=>1 [1,1,1,1,0,0,1,0,1,0,0,0]=>1 [1,1,1,1,0,0,1,1,0,0,0,0]=>1 [1,1,1,1,0,1,0,0,0,0,1,0]=>1 [1,1,1,1,0,1,0,0,0,1,0,0]=>1 [1,1,1,1,0,1,0,0,1,0,0,0]=>1 [1,1,1,1,0,1,0,1,0,0,0,0]=>1 [1,1,1,1,0,1,1,0,0,0,0,0]=>1 [1,1,1,1,1,0,0,0,0,0,1,0]=>1 [1,1,1,1,1,0,0,0,0,1,0,0]=>1 [1,1,1,1,1,0,0,0,1,0,0,0]=>1 [1,1,1,1,1,0,0,1,0,0,0,0]=>1 [1,1,1,1,1,0,1,0,0,0,0,0]=>1 [1,1,1,1,1,1,0,0,0,0,0,0]=>6
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
Number of simple modules with projective dimension equal to the global dimension of the Nakayama algebra corresponding to the Dyck path.
Code
DeclareOperation("numberssimpprojdimg", [IsList]);

InstallMethod(numberssimpprojdimg, "for a representation of a quiver", [IsList],0,function(L)


local list, n, temp1, Liste_d, j, i, k, r, kk;


list:=L;

A:=NakayamaAlgebra(GF(3),list);
g:=gldim(list);
R:=SimpleModules(A);
RR:=Filtered(R,x->ProjDimensionOfModule(x,g)=g);
return(Size(RR));
end
);


Created
Oct 29, 2017 at 17:10 by Rene Marczinzik
Updated
Apr 28, 2018 at 12:50 by Martin Rubey